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Summary

During the last decade, Doignon & Falmagne have developed a qualitative structural ap-
proach to the modeling of knowledge. This knowledge structures theory involves several
noteworthy advantages ~ the most important is the economical and efficient assessment
of individual knowledge states within a specified field of knowledge. However, the know-
ledge structures theory suffers from a purely descriptive approach to the representation of
knowledge that is without any cognitive interpretation. Recent efforts to base knowledge
structures on underlying skill sets appear not to be appropriate to enrich the behavi-
oral approach cognitively because they treat skills as pure epiphenomena of empirically
constituted knowledge structures.

The paper presented here proposes a way in which the behavioral knowledge structure
approach could be reconciled with traditional and cognitive explanatory features of know-
ledge assessment. It develops a formal framework in terms of competence and performance
where performance is conceived as the observable solution behavior of a person on a set
of domain-specific problems, and competence is understood as a theoretical construct for
explaining and predicting performance. A basic presupposition is that existing domain-
specific theories can be utilized for a genuine modeling of theoretically meaningful compe-
tence (skills) structures, whereas performance structures are goal-directedly constructed,
structurally adequate empirical representations of competence modelings.

The central concept of our competence-performance approach to knowledge modeling is a
mathematical structure termed a diagnostic that creates a relationship between a family
of competence states and a family of performance states. In an order-stable diagnostic, the
family of competence states as well as the family of performance states are conceptualized
as partially ordered sets and there exists an order-preserving (montone) function that maps
the family of competence states onto the family of performance states. In a union-stable
diagnostic, both the family of competence states and the family of performance states are
union-stable and there exists a union-preserving function from the family of competence

states onto the family of performance states.

In this paper we will derive conditions and several properties of order-stable and union-
stable diagnostics. The main focus hereby is on the concept of a union-stable diagnostic
because this concept includes the extension and reinterpretation of the central concept of a
"knowledge space” in Doignon & Falmagne’s theory. We will then report on an empirical
investigation which illustrates some advantages of union-stable diagnostics in practical
application. The paper concludes with a summary and general discussion on the proposed

competence-performance approach to the knowledge structures theory.

Key words: competence—performance, knowledge structures, knowledge spaces, skills




Zusammenfassung

In den vergangenen zehn Jahren haben Doignon & Falmagne mit der Wissensstruktur-
Theorie einen qualitativ-strukturellen Ansatz zur Wissensmodellierung entwickelt. Diese
Theorie zeichnet sich durch einige bemerkenswerte Vorziige aus; vor allem ermdglicht
sie die dkonomische und effiziente Diagnose individuellen Wissens innerhalb eines spe-
zifischen Wissensbereichs. Allerdings ist unter kognitiven Gesichtspunkten der rein de-
skriptive Ansatz der Wissensstruktur-Theorie als gravierendes Defizit anzusehen. Jingste
Bemiihungen, Wissensstrukturen auf zugrundeliegenden Mengen von ”skills” zu basieren,
erscheinen zur kognitiven Anreicherung des behavioralen Ansatzes ungeeignet, weil die
skills dabei lediglich als Epiphdnomene der empirisch konstituierten Wissensstrukturen

fungieren.

Der vorliegende Beitrag beschreibt in Begriffen von Kompetenz und Performanz einen
erweiterten formalen Rahmen fiir die Wissensstruktur-Theorie, um diese an traditionelle
und an kognitive Erklarungsansitze der Wissensdiagnostik anzubinden. Performanz wird
hier aufgefafit wird als beobachtbares Verhalten einer Person beim Ldsen spezifischer Auf-
gaben aus einer Wissensdoméne, wahrend Kompetenz als ein theoretisches Konstrukt
zur Erklarung und Prognose von Performanz verstanden wird. Dabei beruht der An-
satz auf der grundlegenden Annahme, dafl verfiighare domanspezifische Theorien fiir eine
genuine Modellierung theoretisch bedeutungshaltiger Kompetenzstrukturen genutzt wer-
den kénnen, wahrend Performanzstrukturen zielorientiert als strukturaddquate empirische
Reprisentationen von Kompetenzmodellierungen konstruiert werden.

Das zentrale Konzept des Kompetenz-Performanz-Ansatzes fir die Wissensmodellierung
ist eine mathematische Struktur, bezeichnet als Diagnostik, welche eine Beziehung zwi-
schen einer Familie von Kompetenzzustinden und einer Familie von Performanzzustinden
herstellt. In einer ordnungstreuen Diagnostik sind die Familien der Kompetenzzustinde
und der Performanzzusténde als partielle Ordnungen konzeptualisiert, und die Familie der
Kompetenzzustinde wird durch eine ordnungserhaltende (monotone) Funktion auf die Fa-
milie der Performanzzustinde abgebildet. In einer vereinigungstreuen Diagnostik sind die
Familien der Kompetenzzustinde und der Performanzzustinde jeweils vereinigungsstabil,
und es existiert eine vereinigungstreue Abbildung der Familie der Kompetenzzustinde auf

die der Performanzzustande.

Im Laufe des vorliegenden Beitrages werden Bedingungen und einige Eigenschaften ord-
nungstreuer und vereinigungstreuer Diagnostiken hergeleitet. Der Fokus liegt dabei auf
dem Konzept der vereinigungstreuen Diagnostik, da dieses Konzept die Erweiterung und
Reinterpretation des in der Theorie von Doignon & Falmagne zentralen Konzepts des
"Wissensraumes” darstellt. Berichtet wird weiterhin iiber eine empirische Untersuchung,
welche einige Vorziige vereinigungstreuer Diagnostiken in der praktischen Anwendung illu-
striert. Der Beitrag schliet mit einer Zusammenfassung und allgemeinen Diskussion iiber
den vorgeschlagenen Kompetenz-Performanz-Ansatz fiir die Wissensstruktur-Theorie.

Schliisselwérter: Kompetenz—Performanz, Wissensstrukturen, Wissensrdume, skills




1 Introduction

Approaches to knowledge representation

During the past three decades, cognitive psychologists have developed several po-
werful systems for the representation of qualitative-structural aspects of knowledge
in human memory, for example propositional and schema-based representation sy-
stems, mental models, neuronal networks etc. (for an overview see e.g. Mandl
& Spada, 1988). In contrast to the research on Artificial Intelligence, the central
criterion for the usefulness of a particular psychological knowledge representation
model is the empirical (psychological) validity of that model (Spada & Mandl, 1988).
Validity becomes crucial, for instance, when the model is to be used as a frame of
reference for diagnosing individual knowledge and/or goal-directed adaptive instruc-

tion.

Unfortunately, many of the currently existing cognitive theories and knowledge re-
presentation modelings are related too poorly and indirectly to behavioral data be-
cause they are formulated to a great extent as computerized systems on a level that
Anderson (1990) calls the implementation level. In order to bridge the gap between
the highly elaborated cognitive modelings and the level of observation, many cogni-
tive psychologists propagate successful computer simulation of observable behavior
as an indication for the psychological meaningfulness of the underlying knowledge
representation model (e.g. Spada & Reimann, 1988). But there is at least one
specific methodological problem with simulations, the irrelevant-specification pro-
blem (Newell, 1990), concerning the suspicion that computer simulations stipulate
a large number of assumptions, "just to make the simulation run” (Reitman, 1985,
cit. Newell, 1990, p.23). The difficulty then is to separate the psychologically re-
levant claims from the adventitious aspects of the program®. Therefore, computer
simulation as a method of validating a cognitive theory should be judged sceptically
until at least the basic assumptions for the implemented cognitive model have been

empirically proved (see e.g. Mandl, Friedrich & Hron, 1988).

The deficiency of diagnostical instruments for relating cognitive theories to empirical
data (Tergan, 1986), or, stated another way, the discrepancy between the richness of
cognitive modeling approaches and the relative paucity of observable behavior data
continues to generate a serious handicap for a sufficient psychological validation of
the theoretical models as well as for practical applications of these models in the

context of a theory-oriented qualitative knowledge diagnosing.

1Newell (1990) himself argues that a ”unified theory of cognition” would contribute to solving
this problem.




An approach to knowledge representation and diagnosis of a completely different
type is Doignon & Falmagne’s knowledge structures theory developed during the
last decade. The major advantage of Doignon & Falmagne’s theory is that know-
ledge representation and knowledge diagnosis are closely related on the level of
behavioral data. However, in marked contrast to the problems of many existing
cognitive theories and systems for knowledge representation, a serious deficit of the
knowledge structures conception is the lack of theoretical foundation for the opera-
tionally constituted knowledge structures. Nevertheless, despite its disadvantages,
the knowledge structures theory seems able to contribute some ideas to the issues of
validating models of knowledge representation and of diagnosing individual know-
ledge states. For this, however, Doignon & Falmagne’s original approach has to be

extended in several ways.

This paper attempts to take steps toward linking the knowledge structures theory
to the psychometrical tradition and to contemporary cognitive psychology. In the
next two subsections, Doignon & Falmagne’s theory of knowledge spaces will be
presented and briefly discussed, and the central ideas of a competence-performance
conception for the knowledge structures theory will be outlined. In Section 2 the
basics of the competence-performance conception will be introduced. The formal
efforts of this paper will concentrate, in Sections 3 and 4, on an extension of the
theory of knowledge spaces. Section 5 reports on a study concerning the newly
introduced modeling approach for the theory of knowledge spaces. Some aspects of

the competence-performance conception will be discussed in Section 6.

The knowledge structures theory

The knowledge structures theory (Doignon & Falmagne, 1985; see also Falmagne,
Koppen, Villano, Johannesen & Doignon, 1990) presupposes that the "knowledge”
of an individual in a particular domain of knowledge can be operationalized as the
solving behavior of that individual on a domain-specific set X of problems. If the
solution result is binarily coded by correct/incorrect, then the knowledge state of an
individual in the given field of knowledge can be formally described as the subset
of problems from X he/she is capable of solving. Now, it is a well-known fact that
there often exist solution dependencies between problems within a certain field of
knowledge. Within the knowledge structures theory, that fact is taken into account

by two distinct conceptualizations.

The first approach for modeling the solution dependencies of a domain of knowledge
is to assign to each problem z € X a family of subsets of X called clauses, with
the interpretation that, if a person is capable of solving z then he/she is capable

of solving all problems in at least one of these clauses. This idea is involved in the




following notion of a surmise system. A surmise system is defined as a pair (X, o)
with a set X (of problems) and a mapping o, called surmise function on X, that
associates to each z € X a family o(z) of subsets of X called the clauses for z so
that three conditions hold:

(1) Every clause for z contains z;

(2) If some clause C for z contains some problem y € X, then there exists some
clause D for y with D C C;

(3) Any clause C for z is minimal with respect to C.

The second approach is obvious. Because of the solution dependencies on the set X
of problems, not each subset of X should indicate an observable knowledge state.
Therefore, the set of all "empirically possible” knowledge states forms a particular
family K of subsets of X which is, in general, not identical with the power set of
X. The pair (X, K) is said to be a knowledge structure. Special interest is directed
to knowledge spaces. A knowledge structure (X, K) is called a knowledge space
when the set X and the empty set () belong to K and K is stable under union.
Motivation for this conceptualization can be found in Doignon & Falmagne (1985)
or in Falmagne et al. (1990). One reason for the importance of knowledge spaces is
that they can be efficiently stored in the form of a basis. The basis of a knowledge
space (X, K) is the minimal subfamily B(K) of K so that each knowledge state in

K can be written as a union of elements of B(K).

The two concepts of a knowledge space and of a surmise system play an essential role
in Doignon & Falmagne’s theory. The reason is that Doignon & Falmagne (1985)
succeeded in constructing a one-to-one correspondence between surmise systems and
knowledge spaces. For a given knowledge space (X, K), let K, denote the family
of states containing some problem z € X, and let K, := Min K, represent the set
of all minimal states in K, (with respect to the subset relation C). Taking into
account that the families K, (z € X) are closely related to the basis B(K) of the
knowledge space (X, K) through B(K) = |J{K, | z € X}, the following theorem is

immediately comprehensible.

Theorem (Doignon & Falmagne, 1985): Suppose that X is a nonempty,
finite set of problems. Then there is a one-to-one correspondence between
the set of all surmise systems (X, o) on X and the set of all knowledge
spaces (X, K) on X. This correspondence is specified by the equation
o(z) = K, .

With these formally equivalent concepts of a knowledge space and a surmise sy-

stem Doignon & Falmagne capture those structures inherent in knowledge that can
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be operationalized as solvability relations between problems of a specified field of
knowledge. The decisive advantage of this set-theoretical approach to knowledge re-
presentation is that domain-specific knowledge is modeled as a family of empirically
expected states that can, in principle, be observed as solution patterns on problems.
In this way, a knowledge representation model immediately provides a frame for in-
dividual knowledge diagnosing. Based on knowledge structures (once they have been
empirically validated) automatic procedures for an efficient assessment of knowledge
can be designed, and this is the essential aim of Doignon & Falmagne’s knowledge
structures theory (see Doignon & Falmagne, 1985; Falmagne & Doignon, 1988a,
1988b).

A major problem of the knowledge structures approach, however, is the fact that it
yields purely behavioral and descriptive models of knowledge domains without any
theoretical explanation for the observed knowledge states. Suppose, for example, a
certain knowledge structure has been accepted as a valid description of empirically
observable knowledge states — what about knowledge states based on another set
of problems ? Without some theory on the underlying skills or competencies it is
not possible to predict the problem solving behavior for a new problem; moreover,
in connection with learning and instruction within a certain field of knowledge,
the knowledge model does not provide any advice to help identify which kind of
information a person should be taught in order to enable him/her to master a

problem previously not solved.

Also in Doignon & Falmagne’s research group the problems of a merely descriptive
knowledge modeling seem to be recognized. Referring to a long-standing psychome-
tric tradition, an approach for basing a knowledge structure on a family of ”skills” is
outlined in Falmagne et al. (1990). The central idea is that a person should master
a given problem if he/she possesses the necessary skills (see also Marshall, 1981).
This approach is developed further in Doignon (1994) and recently in Dintsch &
Gediga (1995). In this line of research, however, skills are treated as pure epiphe-
nomena of empirically constituted structures, as abstract entities, that only have
to be properly assigned to a specified set of problems in order to formally generate
the previously established knowledge structure or knowledge space (a typical ques-
tion is whether any given knowledge structure or knowledge space can be generated
from a minimal and unique skill assignment — see e.g. Doignon, 1994; Diintsch &
Gediga, 1995). In this way, one merely obtains a set of uninterpreted ”hidden fac-
tors” (Doignon, 1994) generating the particular empirical knowledge structure but
no meaningful theory on the domain-specific skills underlying the solving-behavior
on various samples of problem sets of that knowledge domain. This procedure may
be indicated in preliminary studies of specific knowledge domains where no theoreti-

cal concepts of the domain-specific knowledge are available. In a growing number of




fields, however, detailed theoretical models for the observable behavior in answering

knowledge questions or solving certain types of problems have been developed.

A competence-performance approach

The purpose of this paper is to present an approach that conceptualizes a domain
of knowledge in terms of competence and performance. Performance is conceived
as the empirically observable solution behavior on a particular set of problems,
competence (skills, ability, knowledge) as theoretical entities for the explanation and
prediction of performance. Competence is assumed to be modeled as a genuine
meaningful competence structure (resp. competence ordering, competence space),
based in general, on empirical and theoretical results from scientific tesearch in the
field of interest. The following examples may concretize how domain-specific theories

can be utilized for competence modeling.

EXAMPLE 1: Spada & Kluwe (1981) relate their study on balance beams problems
to Piaget & Inhelder’s research on the genesis of the concept of "proportion”. In this
case, a developmental theory for the genesis of certain skills (or ”competencies”) is

utilized for the prediction of theoretically expectable performance states.

EXAMPLE 2: For the purpose of knowledge modeling in elementary physics, Opwis,
Spada, Bellert & Schweizer (1994) use a theory on multiple mental representation
of physical knowledge. Knowledge elements (formulated as production rules) on a
qualitative-relational, a quantitative-relational, and a quantitative level are expli-
cated. Learning is conceptualized as knowledge acquisition on one representational
level or as a transition from one level to another. Then, the diagnosed individual
knowledge can be conceived as a state (we would say a ”competence state”) con-
sisting of a particular subset of knowledge elements. Note that, according to the

theory, only certain subsets of knowledge elements are accepted as states.

EXAMPLE 3: Schrepp (1995) reports on an investigation where a process model for
interindividual differences in solving letter series completion problems was to be te-
sted. The model is an extension of a model described in Simon & Kotovsky (1963).
It is formulated as an algorithm parametrized by three parameters that account for
the individual capability of solving certain problems. By the model, the family of
possible parameter combinations and, therefore, the set of empirically expectable
solution patterns on the problems, are strongly restricted. That provides a strong
empirical test for the underlying model. In our context, the family of theoreti-
cally admitted parameter combinations may be considered a family of theory-based

"competence states”.
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EXAMPLE 4: Curricular networks of learning/teaching goals in a particular know-
ledge domain are used in Korossy (1993) for the establishment of ”competence struc-
tures” and corresponding ”performance structures”. In Section 5 of this paper, we
will present a reanalysis of a study reported in Korossy (1996). In this study, the
competence modeling is essentially directed by curricular considerations on learn-
ing/teaching goals in a specified area of elementary geometry, and performance is

established as a theory-based empirical representation of the competence model.

The essential distinction of the competence-performance approach to the ”skill func-
tions approach” is that competencies/skills are no longer viewed as epiphenomena
of the observable problem solving behavior; instead, competence is given a priority
role in knowledge modeling. Our concept of knowledge modeling is first to build a
competence structure on the basis of a domain-specific theory, and only after that
to construct appropriate structure-preserving performance representations of the gi-
ven competence structure. As structures for modeling competence we concentrate
here on those types of structures introduced in Doignon & Falmagne’s knowledge

structures theory.

The competence-performance approach to the knowledge structures theory is con-

fronted with three main tasks:

(1) to define appropriate representation concepts for the mapping of the various

types of competence structures to the level of performance;

(2) to explicate conditions for problem sets which guarantee structurally adequate

empirical representations of the competence structures;

(3) to analyze properties and some critical situations emerging as a consequence

of the defined representation concepts.

This article is concerned with tasks (1) and (2); task (3) is the subject of an another
paper.

The next three sections introduce selected parts of a theoretical framework for
competence-performance structures. In Section 5, an empirical application of the
theory within a domain of elementary geometry is reported. Altogether, this con-
tribution shall outline one possible approach in which Doignon & Falmagne’s know-

ledge structures theory could be reconciled with the psychometric tradition.




2

The competence-performance approach

Basic assumptions

The basic premise is to make a clear distinction between competence (skills, ability,

knowledge) as theoretical entities and performance as the empirically observable

solution behavior on certain given problems. The theoretical approach to be outlined

in this paper is based on the following assumptions.

2.1 Assumptions:

(1)

A particular knowledge domain W can be modeled through a finite, non-
empty family IC of “competence states”. The knowledge, capability or the
set of skills of a person with respect to the domain (at a given time) is a
certain element of K. The family /C is conceived as a set of not directly
observable theoretical constructs (ideally) constituted on some domain specific

(psychological) theory.

The family /C of competence states may be structured through order relations
or operations of supremum or infimum. Taken into special consideration is
the case that the competence states themselves are specified as particular
subsets of a domain-specific set £ of so-called ”elementary competencies”. The
set £ may be structured for its part (e.g. through surmise structures); these

structures would then limit the family C of competence states.

The knowledge domain W can also be modeled by a set A of “problems”. It

is assumed that

(a) each problem z € A is solvable exclusively with the knowledge modeled
by K
(b) for each problem z and each competence state x € K it can uniquely be

decided whether or not z can be solved in «.

It is explicitly taken into account that a problem may be solvable in various

ways (in different competence states respectively).

Every person is — according to his/her momentary competence state - capable
of solving certain problems and only those problems. The result of this solving
behavior is observable as a ”correct solution” or an “incorrect solution” for
each applied problem. The subset of correctly solved problems is called the

?solution pattern” for that person.
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(5) The solvability conditions of the problems in K provide theoretically expected
solution patterns. A theoretically expected solution pattern is called a "perfor-
mance state”. An empirical validation of the knowledge modeling means that
the performance states coincide with the observed solution patterns. If the
modeling is validated, the performance state of a person suggests conclusions

on the possible competence state of that person.

With these assumptions in mind we reinterpret the basic concept of a knowledge

structure in the following manner:

e A pair (£,/C) consisting of a finite, non-empty set £ of elementary competen-
cies and a non-empty family /C of subsets of £ called competence states is said
to be a competence structure. It is assumed that for each € € £ there exists a

competence state « € IC such that ¢ € .2

e A pair (A,P) consisting of a finite, non-empty set A of problems and a non-
empty family P of subsets of A called performance states is said to be a
performance structure. Again, it is assumed that for each z € A there exists
a performance state Z € P such that z € Z.

At this point, the concepts competence structure and performance structure are
formally equivalent and only differ with respect to their psychological interpretation.
However, with the definition of the concept of a ”diagnostic” in the next subsection,

these structures will also be given formally different positions.

The concept of a diagnostic

The basic concept of a diagnostic is developed in two steps. The first step introduces
the concept of a ”competence-based problem set”; the second step leads directly to

the concept of a diagnostic.

The idea for the concept of a competence-based problem set is the following: A
problem z € A can be related to the set IC of competence states or "interpreted”
in IC, if K includes all competence states of the domain which are alternatively
sufficient for solving that problem. Then, the interpretation of z in K can be

realized through mapping z to a set
k(z) == {k1,K2,k3,...,6} (r €IN),

specific for z, which contains exactly those competence states of K, in which z can

be solved. This idea leads to the following definition.

2This postulate is equivalent to UK = &£, so that K itself contains all information on £.
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2.2 Definition: Let K be a set of competence states. Further, let A be a set of
problems and £k : 4 — p(K) a mapping which assigns to each problem z € A a
subset k, := k(z) C IC of competence states (the set of competence states in each
of which z is solvable) so that

(k1) ks #0;
(k2) k, # IC.

Then the problem set A is called a problem set based on IC or interpreted in IC; k is
called the (corresponding) interpretation function, and for each problem z € A the

set k; is called the interpretation of z or the problem concept of x in K.

Obviously, the above definition is in concordance with the idea of interpreting pro-
blems in a set of competence states. The existence (well-definedness) of the inter-
pretation function assures that to each problem a unique interpretation within the
considered set of competence states is assigned. The conditions k(A) C p(K) and
(k1) mean that no ”practically relevant” solving competencies should lie outside KC.
The postulate k; # K for each problem z € A accounts for the idea that solving
a problem seen as representative for the domain should imply some information on

the given set of competence states®.

Remark: Given a set A of problems interpreted in IC through & : A — p(KC),

there is a uniquely determined complementary function

A — p(K)

(2.3) k™ :
sk = K\k = {peK|péks}

that assigns to each problem z € A the complementary concept k7 including all
those competence states in which z is not solvable. The function £~ will be used

later.

Now, let A be a set of problems interpreted in a set of competence states K with an
interpretation function k. A reasonable concept of a competence-based performance
state should involve the following idea: A subset Z C A of problems is considered

a performance state, when there exists a competence state & € IC so that Z includes

8The definition in 2.2 corresponds to the concept of a ”skill assignment” in Doignon (1994).
If the competence states are specified as subsets of a set £ of elementary competencies, then the
interpretation function coincides with the notion of a ”skill multiassignment” in Doignon (1994),
but not exactly with the concept of a ”skill function” in Diintsch & Gediga (1995) that is used to
specify those sets of skills which are minimally sufficient to solve a problem z.

12




exactly those problems which are solvable in x. This idea can be formalized through

a mapping

K — p(A)

2.4 :
(2.4) P ko p) = (o€ A| k€ k)

which assigns to each competence state « € IC the unique (possibly empty) set of all
problems solvable in k; then each element in the image of IC under p is a (competence
based) performance state in the above sense, and the total set of all those performance
states “represents” the given set of competence states IC, possibly as a ”diminished”

image of K.

The mappings & and p are the tools for linking a performance structure (A, P) to

a set of competence states.

2.5 Definition: Let KC be a set of competence states and (A, P) a performance

structure. Assume the following conditions hold:
(1) Aisa problem set interpreted in X by a function & : A — p(IC);

(2) the image of the mapping p: IC — p(A) induced by k according to (2.4) is

Then (A, P) is called a representation of IC (under p). The function k is called
the interpretation function for (A, P) (relative to IC), the mapping p is called the
representation function of K (relative to (A,P)). The 5-tupel (K, A,P,k,p)
is said to be a diagnostic. If the competence states of IC are subsets of a set &
of elementary competencies (that is, if (£,/C) is a competence structure) then we
usually denote the diagnostic as a 6-tupel (&,1C, A, P,k,p).

This definition of a diagnostic resp. a performance structure (A,P) as a represen-
tation of a set K of competence states under a representation function p reflects the
previous characterization of (competence based) performance states in P. Condition
(2), namely that the image of JC under the representation function p be equal to
P, formally assures that on the one hand all subsets of problems generated by p
are members of the performance structure (A, P) (because p(IC) C P is postula-
ted), and that, on the other hand, all performance states occurring in P are images
of competence states in /C and in that sense theoretically interpretable (because
p(KC) 2 P is required).

Let us point here to a property inherent in the concept of a diagnostic that is

advantageous for the
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construction of a diagnostic:

For a given set JC of competence states the construction of a representa-
tion can proceed step by step. If in a diagnostic (IC, A, P, k,p) the set
A of problems is extended to the set A’ := AU{z} by a problem z with

interpretation in IC, then the resulting structure is again a diagnostic.

That is, depending on practical requirement, a representation of a given set of
competence states can be established step by step becoming an increasingly more

accurate image of the set of competence states.

For later use, two easily verified lemmata for diagnostics are mentioned here. The
first lemma formulates a necessary and sufficient condition for the existence of an

empty state In a representation of a competence structure.
2.6 Lemma: For a diagnostic (IC, A, P,k,p) holds: Jk(A) =K < (¢ P.

The following lemma states, that not only the interpretation function k¥ determines
uniquely the representation function but, vice versa, also the interpretation function
is uniquely determined by the representation function p. This is in concordance with
Diintsch & Gediga (1995, Proposition 2.3.). We will need this lemma repeatedly.
The proof is obtained immediately by referring to the definition of p in (2.4).

2.7 Lemma: Let (IC, A,P,k,p) be a diagnostic.
(1) z€plk) < kK€ky,, foral zc A keK.

(2) k={AeK|zep(\)}, foral zcA.

In general, the concept of a diagnostic seems to fit the assumptions in 2.1 fairly well.
The advantages of the proposed conceptualization are obvious: When a performance
structure has been constructed as a representation of a well-founded domain-specific
competence structure, then empirically observable solution patterns resp. solvability
relations between problems can be theoretically explained and as empirical hypo-
theses derived and tested. More fundamentally, within this approach to knowledge
conceptualization, a domain-specific theory has a chance for validation by way of
modeling it as a competence model and representing it as a performance struc-
ture that can be tested directly. Whenever such a system of a competence and a
performance structure (that is, a diagnostic) is accepted as psychologically valid,
then an observed performance state of a person can be related back to the possi-

bly underlying competence state of that person, and this competence diagnosis will
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be the more accurate the more precisely the performance structure represents the

competence structure®.

From a mathematical viewpoint the concept of a diagnostic is a rather weak concept.
Nevertheless, it should be emphasized that for several modeling tasks the weak
concept of a diagnostic is useful. Take, for instance, the task of modeling knowledge
including misconcepts. In this case, if a problem z is solvable in a certain competence
state k, that does not necessarily imply that z can be solved when a misconcept
is joined to «; therefore, in this case, any definition of an interpretation function

leading to a monotone representation function would be inadequate®.

In many situations, however, special structural assumptions are indicated. The
following considerations concentrate on diagnostics with special properties. In the
next section, the concept of an order-stable diagnostic is introduced, then, in Section
4, the concept of a union-stable diagnostic as a special order-stable diagnostic is

defined and analyzed more in depth.

3 Order-stable diagnostics

The family K of competence states of a competence structure (£,/C) can be regar-
ded as being partially ordered through the subset relation C, that is, (KX, Q) isa
partially ordered set. Koppen (1989) has shown that a partially ordered family of
states can be interpreted in the frame of knowledge modeling in several interesting
ways, e.g. as a family of "maximal learning-paths” that generalizes the concept of a
Guttman scale. Adopting that interpretation, let us assume for the rest of this pa-
per that the elementary competencies in £ are "proper” knowledge elements and not
misconcepts. In the following, we introduce the general concept of an order-stable

diagnostic.

The concept of an order-stable diagnostic

In general, we call a (finite, nonempty) family /C of competence states ordered by
a partial order < a competence ordering and denote it by (K, <). If a competence
structure (€,K) is ordered by C we write (KC,C) for the competence ordering.
According to this, a performance structure (A,7P) equipped with the partial order
C is called a performance ordering and denoted by (P,C).

4The problem of *fuzzy competence assessment” is analyzed in another paper.
5For instance, Diintsch & Gediga (1995) define the concept of a ”skill function” and the notion

of "knowledge state” in such a way that the resulting ”problem function” is provable as being

monotone.
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Whenever the level of competence is modeled as a competence ordering (I, <), a
natural way of looking for an adequate performance representation suggested by the
usual mathematics is to look for a performance ordering (P,C) and a surjective
order-preserving representation function p : X — p(K) = P. This leads to the

concept of an order-stable diagnostic.

3.1 Definition: Let (K,A,P,k,p) be a diagnostic with the competence ordering
(1€, <) and the performance ordering (P, C). The performance ordering (P, C)
is called an order-preserving representation for (K, <), when the representation

function p: K — P is monotone (order-preserving), that is, when
k<A = p(k) Cp(A), foral k, )€K,

Then the diagnostic (IC, 4, P, k,p) is called an order-stable diagnostic.

We will not develop here fully the theory of order-stable diagnostics. However,
the representation problem for competence orderings should be formulated and a
solution should be derived at this point. The results will be needed for the theory

of union-stable diagnostics which we will concentrate on later.

Conditions of order-preserving representation

If (I, A, P,k,p) is a diagnostic with the competence ordering (/C,<) and the
performance ordering (P, C), then the monotony of the representation function
can easily be checked. However, the essential aim of the modeling approach followed
here, is a constructive one: Given a modeled competence ordering, the central task
is to construct an order-preserving performance representation. For this, we have to
know which formal properties a set of problems must fulfill to guarantee the required

representation quality. Thus, we have the following

representation problem for competence orderings:

Given a competence ordering (K, <) and a set A of problems interpreted
in K through k(A):={k, € p(K) |z € A}.

Which conditions must the set A resp. the set k(A) satisfy in order
to ensure that the induced representation function p : K — p(A) is
monotone and thus (A,P), with P := p(K), is an order-preserving
representation for (IC, <)?

The following proposition reveals a solution for this representation problem. It
formulates two logically equivalent easily checkable criteria for the monotony of the

representation function.
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3.2 Proposition: Let (IC, A, P,k,p) be a diagnostic with the competence ordering
(K,<). (K,A,P,k,p) is an order-stable diagnostic (that is, p is monotone), if
and only if for each problem z € A with concept ky the two logically equivalent

conditions are satisfied:
(i) kK€kyA <A = A€ky, fordl k, A€ K;

(i) ke€kyaA<k = Ae€k;, foral k, XK.

Proof: (i) Let x, A € IC. Then

k<X = p(k) Cp(A)
iff Vee Ale <X = (z €p(k) = € p(N))]
iff Vee A[k <) = (k €k, = AE k)]
iff Vee Alk€k, A <A = X€k].

(i) With X\ ¢ k, <= X € k the logical equivalence of (i) und (ii) is obvious. O

From the constructional perspective of the competence-performance modeling the
criteria given in 3.2 are quite interesting: Conditions for the monotony of the re-
presentation function are not ”global” conditions for the whole set A of problems;

rather they are ”local” conditions for each single problem. From this follows for the

construction of order-stable diagnostics:

For a given competence ordering the construction of an order-preserving
representation can proceed step by step. If in an order-stable diagnostic
(IC, A, P, k, p) the set A of problems is extended to the set A" := AU{z}
of problems by one problem « satisfying (i,1i) from 3.2, then the resulting

diagnostic is order-stable too.

Thus, an order-preserving representation can be constructed step by step becoming

an increasingly sharper image of the given competence ordering.

Because the condition for order-stable representations is a local condition, further
considerations may be directed to the single problem. Let us first introduce a deno-

tation.
3.3 Definition: Let ()C,<) be a competence ordering. A problem z interpreted in

JC through k, (resp. k) is called order-stable (with respect to (IC, <)), when the

conditions (i) and (ii) from Proposition 3.2 are satisfied.

17




The concept of an order-stable problem may now be characterized as follows: A
problem z interpreted in the competence ordering (XC, <) is order-stable if and only
if the following holds: Whenever z is solvable in a certain competence state « € IC,
then z is also solvable in each competence state A € IC "above” « (that is k < A).
This characterization meets the idea of problems ”representative for a competence

ordering” precisely:

e Comparing interindividual differences in the solution behavior of subjects on
a set of problems, if problem z is solved by a subject in a certain competence
state «, then z should be solved by each subject in a higher competence state
A > k.

e In the context of learning, if a subject proceeds from one competence state
k to a higher state A > k, then each problem z the subject was capable of

solving in « should also be solvable in A.

Before proceeding to a more compact characterization of the concept of an order-
stable problem, let us first note some aspects of order-stable problems which are
needed later. (For a partially ordered set (P, =) we use the denotation Max P resp.
Min P for the subset of the maximal resp. minimal elements in P with respect to
the partial order <.)

3.4 Lemma:

(1) Let (K, <) be a competence ordering and z a problem that is interpreted in IC
through k, and order-stable in (KC,<). Then

Min K € k, and (Max K)Nk, #0.

(2) Let (KC,C) be a competence ordering and z a problem that is interpreted in K
through k, and order-stable in (K, C). Then

Pel = 0¢ky; EEK = E€k,.

Proof:

(1) In case Min K C k;, it would follow from the definition of an order-stable
problem that K C k,. That is in contradiction to 2.2. In case (Max K)Nk, =0 it
would be Max K C k7, thus IC C k; , thus k, = 0, which contradicts 2.2 as well.

(2) For a competence ordering (K, C) with § € K is Min K = {#}. Then from (1)

follows @ ¢ k,. The second assertion follows the same way. o
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Remark: Conversely, the conditions for k, in 3.4(1) imply k, # K and k; # 0;
thus, for an order-stable problem these conditions are equivalent to the postulates
(k1) and (k2) in Definition 2.2.

From Lemma 3.4, we obtain the following easily verified consequence which we will

need later.

3.5 Consequence: In an order-stable diagnostic (£,1C, A, P,k,p) the following
hold:
ek = p0)=0eP; €K = p()=AcP.

Characterizations of order-stable problems

Now, we will present a more manageable form of order-stable problems. For this, we
introduce some definitions and notations from the theory of partially ordered sets
(see e.g. Davey & Priestley, 1990, pp. 13-14).

3.6 Definition and Notation:

Let (P, =) be a partially ordered set, @ C P, z € P

Q is called an order ideal, when Vz,y€ P(z € Q ry <z = y € Q).
Q is called an order filter, when Vz,y € P(z € Q rz <Xy = y € Q).

Consider the following sets:
TQ:={yeP|IzeQ(z2y)}; Tz:={yePlz2y};
1@ ={yeP|IzeQy22)}; lz:={yePly=2z}.

The set TQ (resp. 1z) is the smallest order filter containing @ (resp. {z}); @ is an
order filter iff Q =7Q; the dual statements hold for | @ (resp. | z).

For finite P, each order filter T can be written in the form

1Q =1Min Q = | J{Tq| g€ Min @},
and, accordingly, each order ideal | @) in P in the form

1Q =IMax Q = [ J{lgqlg€Max Q}.

Using these notions, condition (i) in 3.2 means that k, is an order filter, condition
(ii) means that the complementary concept k7 is an order ideal in (K, <). Thus,

we immediately obtain the following characterizations of order-stable problems:
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3.7 Proposition: Let (K, <) be a competence ordering, z a problem with the con-
cept ky, C IC. The following are equivalent:

(1) Problem z is order-stable.

(2) There exists a subset U C I of competence states so that
ky, =1U = U{mmeL{}.
(3) There exists a subset V C IC of competence states so that

k7 =1V = | J{lpe | ue €V}

If we replace in the preceding proposition U resp. V by the uniquely determined set of
minimal resp. maximal elements in k, using the short denotations k, := Min k, resp.

k; := Max k; , then we arrive at a compact criterion for order-stable problems.

3.8 Proposition: Let (K, <) be a competence ordering. A problem z with concept
k. C K is order-stable if and only if

k:L‘ :T];::n = U{TV!L‘ l Vg € ];"m}7 or equivalently, k; =,L7€; = U{l:ux I P € kx_} :

It is very important for practical use, that the concept k, of an order-stable problem
z in a competence ordering (IC, <) is completely characterized by the set k, of the
minimal competence states, in which z is solvable (and dually by the set 7c; of the
maximal competence states, in which z is not solvable). Occasionally, we refer to
lAcx as the minimal interpretation of the order-stable problem z in (IC, <). If all the
problems of a set A interpreted in (iC,<) by &k : A — p(K) are order-stable in
(K, <), then k is uniquely determined by the composite function k& := Min o k,
which assigns to each z € A the set &, := Min k,. We call & the interpretation
(function) of A in (K,<) as well as k. This type of interpretation function is
introduced in Diintsch & Gediga (1995) under the notion of a ”skill function”. From
the systematical standpoint followed in this paper it should be clear that several

implicit assumptions are involved in that notion.
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4 TUnion-stable diagnostics

The concept of a "knowledge space” plays an important role in Doignon & Falma-
gne’s theory because several formally equivalent representations are available (see
Section 1). This motivates developing a structurally adequate extension of the no-
tion of a "knowledge space” within the competence-performance approach. In this
section we introduce the concept of a union-stable diagnostic and analyze some

properties of this new concept.

The concept of a union-stable diagnostic

Following the guidelines for transforming the knowledge structures theory into the
competence-performance structures approach suggests replacing the concept of a
"knowledge space” by two interpretatively different concepts within the competence-

performance terminology.

e Let (£,KC) be a competence structure. If K is stable under union and contains
B, then (£,K) is called a competence space. Often (£,K) is denoted by
(1C, V).

o Let (A,P) be a performance structure. If P ist stable under union and
contains §, then (A,P) is called a performance space. The short denotation

is (P,U).

4.1 Remark: The close connection between the subset relation C and the union

operation U via
MCN < MUN =N, for every two sets M, N,

implies that each competence space (IC,U) can be conceived as a competence or-

dering (C,C). The same holds for a performance space (P,U).

With the reinterpretation of a knowledge space as a background, we will specify
the introduced concept of a diagnostic in order to utilize the favorable properties of
knowledge spaces within the framework of the competence-performance conception.
We will define the concept of a union-stable diagnostic and legitimize this concept
by showing some of its interesting properties for practical applications; further, we
will investigate the requirements for a goal-directed construction of a union-stable

diagnostic.

Let (£,K,A,P,k,p) be a diagnostic with a competence space (K,U). Common

mathematical methods suggest postulating that the representation function p should
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be union-preserving, that is, p should map the union of some competence states to

the union of the images of these states, that is

(4.2) p(k UX) = p(k)Up(A), fordl s, e K.

In order to obtain a consistent concept of a union-stable diagnostic we first prove

the following lemma:
4.3 Lemma: Let (€,IC, A, P, k,p) be a diagnostic, (IC,U) a competence space and
p: IC — P union-preserving. Then the following holds:

(1) With respect to the partial order C the function p is especially order-preserving,
that is, (€,K, A, P,k,p) is an order-stable diagnostic.

(2) P =p(K) is union-stable;
(3) p(0) =0€P; p&)=AecP;

(2) and (3) mean that (P,U) is a performance space.

Proof: (1) That p is monotone follows, using 4.1 and (4.2), from
£ C A = p(k)Up(A) = p(x UA) = p(A) = p(x) C p(}).

(2) Let X, Y € P. Since p is surjective, there exist «, A € IC with p(k) = X and
p(A) =Y; note that kU A € K. Since p is U—preserving,

XUY = p(k)Up(A) = p(k UX) € P.

(3) The competence space (KC,U) contains () by definition and £ since K is union-
stable and finite. Now, (1) implies (3) using 3.5. 0

Now, we can introduce the following definition.

4.4 Definition: Let (£,K, A, P, k,p) be a diagnostic, (IC,U) a competence space,
(P,U) a performance space, and p : K — P a union-preserving representation
function according to (4.2). Then the representation (P,U) of (IC,U) is called a
unton-preserving representation of (IC,U); the diagnostic (€, 1C, A, P, k,p) is called

a unton-stable diagnostic.

A readily apparent advantage of the concept of a union-stable diagnostic is its pro-
perty of allowing the definition resp. computation of the representation function to

be restricted on the basis of the competence space.
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4.5 Proposition: Let (£,IC, A, P,k,p) be a union-stable diagnostic and B(K) the
basis of the competence space K. If k € I is a competence state represented as
k = |UB(IC) with an appropriate subset B.(IC) C B(K) of the basis of IC, then

the corresponding performance state p(&) is obtained as

p(r) = J{p(B) | B € B(1C)}.

Since each performance state Z € P is the image of some competence state x (see
2.5(2)), it follows from Proposition 4.5, that each performance state can be written
as a union of elements of p(B(IC)); therefore p(B(IC)) must contain the basis B(P) of
the performance space, that is B(P) C p(B(K)). We will see later which elements of
p(B(KC)) belong to the basis B(P) of the performance space. Knowing this, the basis
and therefore the performance space as a whole can be (re-)constructed completely
from the basis B(KC) of a competence space in connection with the interpretation of

the set of union-stable problems in B(KC).

Due to the unjon-stable structures both on the set of competence and the set of per-
formance states and particularly due to the union-preserving representation func-
tion, the concept of a union-stable diagnostic includes quite a few favorable pro-
perties. However, which conditions can ensure that the representation function is

union-preserving ?

Conditions of union-preserving representation

Clearly, because the representation function is completely determined by the inter-
pretation function, these conditions will depend on the specific type of problem set.

We formulate the problem at hand as the

representation problem for competence spaces:

Given a competence space (IC,U).

Which conditions must a set of problems A resp. its interpretation k(A) :=
{k; € p(K) | z € A} in (KC,U) satisfy so that the induced representation
function p : I — p(A) generates a union-preserving representation
(P,U), with P := p(IC) of (K,U); in other words: that (£, K, A, P, k, p)

is a union-stable diagnostic ?

In the following, we will focus our attention on explicating conditions for the con-
structability of union-stable diagnostics. As will be seen, these conditions can essen-

tially be described as certain formal properties of problems. Further considerations
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are then directed to various characterizations of problems with these properties (la-

ter called "union-stable problems”).

The next proposition reveals necessary and sufficient conditions for problems appro-

priate for the construction of a union-stable diagnostic.

4.6 Proposition: Let (€,K, A, P, k,p) be a diagnostic, (IC,U) a competence space.
The representation function p: K — P is union-preserving, hence, (P,U) is a
union-preserving representation of (IC,U) resp. (€,IC, A, P, k,p) is a union-stable
diagnostic, if and only if for each problem z € A and oall k, A € K

(i) K€k AT = XEk,,
(i) kKUXEk, = K€k vAEE,;
or, equivalently,

(i) wk€k;aAXCk = A€k],

(i) K€k AXER; = KUAXNEK].

Proof:

(=) Let p be union-preserving according to (4.2). Then, (£,K,A,P,k,p) is an
order-stable diagnostic according to 4.3(1) and (i) resp. (i’) holds for each =z € A
according to 3.2. Now, let kU)X € k,, for some k, A\ € K and z € A, that
is, by 2.7, = € p(k U X). Since p is union-preserving, z € p(x) U p(}), hence
z € p(k) v ¢ € p(A), and therefore, by 2.7 again, £ € k, v A € kg . (il’) is logically
equivalent to (ii).

(<) Given (i), (ii). For &, A € IC we have only to show p(k U X) = p(x) U p(})

(according to 4.3 (P,U) is then a performance space). Let z € p(k)Up(}), that is,
z € p(k) vz €p(A); assume z € p(k), i.e. kK € ky. Since K € KU, it holds, using
(i), kUM € ky,ie. z € p(kUA). Therefore, p(x) Up(X) C p(s U A). Conversely,
let z € p(kUAN),i.e. kUX € k,. From this follows, using (ii), £ € ks v A € ks, i.e.
z € p(k) vz € p(A), hence z € p(k) Up()). Therefore p(k U X) C p(k) Up(X). D

Proposition 4.6 describes a very important fact: Conditions for a union-stable repre-
sentation of a competence space are “local conditions”. In order to obtain a union-
preserving representation function for the competence space, no global property of
the set of problems as a whole is required; instead, the necessary and sufficient con-
ditions for the structure-preserving representation prove to be conditions for each

single problem. This result is of great importance for the
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construction of union-stable diagnostics:

The construction of a union-stable diagnostic on a given competence
space can be done step by step. If (€,KC, A, P,k,p) is a union-stable
diagnostic and the set of problems A is extended to A’ := AU{z} by a
problem z satisfying the conditions of Proposition 4.6, then the resulting

diagnostic is union-stable as well.

Characterizations of union-stable problems

In the following, we will characterize those problems which assure that the induced
representation function is union-preserving. Let us first introduce a denotation for

these types of problems.

4.7 Definition: Let (/C,U) be a competence space. A problem z interpreted in K
through k, is called union-stable, when for all k, A € IC conditions (i) and (i) resp.

(i’) and (ii") from Proposition 4.6 are satisfied.

4.8 Remark: Comparing 4.6 and 3.2, it becomes obvious that each union-stable
problem z interpreted in a competence space (JC,U) can be regarded as a special
order-stable problem and hence can be represented as shown in 3.7 and 3.8. This

fact is needed later.

Now, a union-stable problem interpreted in a competence space (/C,U) can be cha-
racterized through the property of order-stable problems described in the preceding

section and, additionally, through the following statement:

If k, A are competence states in /C, and if the problem z is solvable in
the competence state k UX € IC, then the problem z is even solvable in

at least one of these states k or A.

This characterization proves to be compatible with the idea of a union-preserving
representation of the competence space. This idea includes that each union of com-
petence states should correspond to the union of the assigned performance states.
Thus, in any learning process that arrives at the union of some competence states,
no problem should be solvable that was not solvable in at least one of the previous
competence states. Each problem violating this solvability condition would destroy
the preserving-property of the representation function and, hence, cannot be used

for a structurally adequate representation of the competence space.
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Certainly, the practical consequences of the derived results are debatable. For in-
stance, the impression could arise that the conditions required for a union-stable
problem might be rather restrictive. This impression can hardly be dispelled un-
less by a demonstration of the practical applicability of the theory. All in all, the
explicated conditions for union-stable problems are exactly those that guarantee a
union-preserving representation of a competence space, and the benefits of a union-
stable diagnostic have to be balanced against the costs of these restrictive conditi-
ons. Perhaps the study reported in Section 5 that demonstrates the modeling of a
knowledge domain in the form of a union-stable diagnostic can prevent the stronger

objections.

Let us continue analyzing some formal aspects of union-stable problems. Because the
central task in constructing a union-preserving representation for a given competence
space is the construction or selection of union-stable problems, in the following
some specific characterizations of these types of problems for practical use will be
explicated. Essentially, we will present two theorems containing formal criteria for
the interpretation k, of a union-stable problem relative to a certain competence
space. (In accordance with Section 1, given a competence structure (€,XK), we use
the short denotation K. for the family of all states in K containing an elementary
competence € € £; accordingly, we use the notation K. = K\ K. .)

4.9 Proposition: Let (KC,U) be a competence space with the set £ of elementary
competencies; further, let k, C K and k = K\ k, C K be two families of

competence states. The following are equivalent:
(1) The problem z with interpretation k, is a union-stable problem.

(2) There ezists a greatest competence state p; € k7 with p; # €, so that for
k, resp. equivalently for k. holds:

ke = {vek|vgup) = UiKs|6ee\u);
ky = {peKlpCur} = NH{KI leeé\u}.

(3) There ezists a nonempty subset ¢ C £ of elementary competencies, so that

for ky, resp. equivalently for k; holds:

ko= {reK|vne#0} = U{Ks|sev};
ky = {peK|pCE&\yp} NA{KS | e € ¢}
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Proof:

(1) = (2). Let z, with 0 # k, C K (according to 2.2), be a union-stable problem.
Then, according to 4.6(ii’), k7 is closed under union, and p; := (Jk; is with
respect to C the greatest element in k. According to 3.7, k7 can be written as

kr ={p el |pCu;}t=(p;)c. The assumption uZ = &€ € k7, would imply
£ ¢ k, which is in contradiction to 3.4(2). Further,

b= K\k = {veK|v )
={veK|Isev(Eee\p)t=J{Ks 6 €\ 7},

and, equivalently,
=i\ ke =1\ |1 16 &\ s} = (K5 16€ €\ uz).

(2) = (3). Let ¢ :=&\ p; . Because p; #E€ is ¢ # 0. Using o =&\ p; <=
p; =E\ @, weobtain for pe K, e €€

pCpu, <= pCE\yp and €€\, < ecyp
resp. v & pu; < vNe#l.

From this the claimed identities follow immediately.

(3) = (1). For ¢ C &, with o #0,letbe k7 :={u €K |puCE\p}. (Itis
clear that the various representations of k; resp. k, are equivalent.) It follows that
£ ¢ k;, thus k; # 0, and since 0 € k7 it is k; # K. Thus, (k1), (k2) from 2.2
are satisfled. Obviously, k, fulfills the conditions from 4.6/4.7 for a union-stable
problem. m]

To express 4.9(3) somewhat differently, the statement for a union-stable problem
z requires the existence of a nonempty subset ¢ C £ of elementary competencies
(specific for z) so that for all v € IC: v € k; <= e € (e € v); thus a
competence state belongs to k, if and only if it contains at least one elementary

competence of a set ¢ C & specific for z.

Remark: The implication (3) = (1) in connection with the preceding results states
that if all problems are interpreted in the competence space (IC,U) in the described
way, then, the resulting performance structure is a performance space. This state-
ment may be regarded as a generalization of Proposition 1.3.1 in Doignon (1994).
This is because all subsets of the family S of skills automatically constitute a (spe-
cial) competence space, and the applied skill assignment (note: not each multiskill
assignment!) automatically satisfies the explicated conditions for union-stable pro-

blems.
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Through 4.9(2) the complementary concept k. of a union-stable problem z is cha-
racterized very clearly and handily as an order ideal

ky ={peK|pCp }=~p)c,

with one maximal competence state « € IC. For the problem concept k., however, a
more convenient description is available. The following theorem provides a charac-
terization for the problem concept k; of a union-stable problem z using 3.7/3.8 and

states from the basis B(K) or the surmise system (IC,o) of the competence space
(1C, V).

4.10 Proposition: Let (K,U) be a competence space with the set £ of elementary
competencies, the basis B(IC), and the surmise function o. Further, let k, C IC and
k; = K\ ky; C K be two families of competence states. The following are equivalent:

(1) The problem x with interpretation k, is a union-stable problem.

(2) There ezists a greatest competence state p; € k with p; # &, so that

ke = T{BeB(K)|BLp;} TMin {8€B(K)[B8CZp;};
ke = T(U{o(é)|6€€\pz}) = 1Min (Ufo(6) |6€&\p7}).

(3) There exists a nonempty subset ¢ C € of elementary competencies, so that

ks
kz

TH{BeB(K)|Bne#0} = TMin {f€B(K)| BN #0};
T(U{e(®) 1éee}) = TMin (U{o(é)é€e}).

Proof:

(1) = (2). Let z be a union-stable problem interpreted in X through k,. By 4.8
z is order-stable, hence k, =7 Min k, according to 3.8. By 4.9(2), there exists a
p; # € with ky, = J{KCs | § € £\ p;}. Then, recalling that for the competence
space (IC,U) the basis B(XC) is constituted by the sets K. :=Min K. via B(K) =
U{K. | € € K}, and moreover that these sets are identical with the clauses o(e)

(see Section 1), we obtain

k, = TMin b, = TMin (| J{Ks |6 € €\ 43}

= tMin (| J{Ks16€ &\ 7)) =1Min (| J{o(8)|6€ &\ 7))
= TMin {8 € B(K) | BN (E\ p;) # 0} =TMin {B€B(K)[BEL u;}-

The set identities of the form Tw =TMin w, for w C IC, are obvious.
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(2) = (3). With ¢ := &\ p3 , the identities of (3) follow from (2).

(3) = (1). Let ¢ €&, ¢ # 0. The various representations for k, are equivalent.
We show: z, with k, =1{8 € B(K) | 8Ny # 0}, is union-stable.

First of all, k, # 0, and, since § ¢ k;, k, # K. Because z is order-stable, it
remains to show for kK, \€EK: k UX €k, = K€k, vAEK,.

Let kU X € ky; then, there exists ° € B(K) with 8° C sk UX A BNy # 0.
Then, (kUM Ny # B, hence kN # v ANe £ 0. Suppose, kN # 0. In
case xk € B(IC), the assertion is true. Let « & B(K). For € € £ N there exists
B. € oe) with e € 8. C &, hence with . N # 0. Thus, « € ks . ]

The various forms for the interpretation of a union-stable problem relative to com-

petence space suggest the following notions:

4.11 Definition: Let (XC,U) be a competence space on the set & of elementary

competencies; let z be a union-stable problem interpreted by k. in XC.

(1) The unique subset kx ‘= Min k, is called the minimal interpretation of z

(resp. of k).
(2) A nonempty subset ¢ C £ of elementary competencies with the property
ke =1{8€ B(K)| BNy #0}=TMin {8 € B(K)| BNy #0}
is called a generating set of k.

(3) If ¢ is a generating set of k;, then we call
by :={B € B(K)| BN #0} the basis interpretation of z (resp. of k),
ke :=|J{o(6)| 6 € ¢} the surmise interpretation of z (resp. of ky).

The defined notions can apply as criteria for union-stable problems relative to a
competence space K: Under the precondition that the concept k, of a problem z
is accepted as being an order filter in /C, the problem z is union-stable in /C if and
only if = can be interpreted in C by one (and then every) of the described concepts.

Let us state here, that for the minimal, the basis and the surmise interpretation of
a union-stable problem z interpreted in K by k, the following holds:

kp C k2 C ko, with k, = Min £ = Min &, .

Preserving-properties in a union-stable diagnostic

Let (IC,U) be a competence space and A a problem set interpreted in /C through

a function k; if the problems of A are union-stable, then the resulting diagnostic
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(£,K, A, P, k,p) is union-stable. Now the question arises how this diagnostic can
be established economically. In the following, we show how the basis B(P) and the
surmise-function s of the representing performance space (P,U) can be constructed
knowing only the basis B(IC) of the competence space and the basis interpretation
k, for each problem z € A.

Proposition 4.5 included that in a union-stable diagnostic (€, KC, A, P, k, p) the basis
B(P) of the performance space is a subset of p(B(/C)). As was noted earlier (see
Section 1), B(?P) is obtained through B(P) = |J{P. | z € A}, where for all z € A
the family P, includes all performance states containing z and ’Pz := Min P, is
the set of the minimal elements in P,. The question to answer now is, how to select

the families P, from p(B(KC)).

Obviously, in each diagnostic (€, K, A, P, k, p) the set P, (z € A) can be constructed
as the image p(k;) of the interpretation of z in K under p, that is P, = p(k;). If
(€,C, A, P, k,p) is union-stable, for the basis interpretation k, of a (union-stable)
problem z € A (using the fact that p is order-preserving according to 4.3) it is easily
shown, that P, C p(l~cz) C p(k;) = Py, thus P, = Min p(l~cm) On the other hand,
for k, C B(K) we obviously have Min p(ks) C p(ks) C p(B(K)).

We summarize these considerations by the following proposition.

4.12 Proposition: For a union-stable diagnostic (€,1C, A, P, k,p) the following
statements hold:

(1) The basis B(P) of the performance space (P,U), which is obtained through
B(P) = U{P. |z € A}, is a subset of p(B(K)), that is B(P) C p(B(K)).

(2) The families P,, that constitute the basis B(P) of the performance space,
can be obtained by taking the minimal elements from the image of the basis
interpretation k, of x, that is P, = Min p(%m)

Taking into account once more that by Doignon & Falmagne’s theorem the sur-
mise function s for a performance space (P,U) is connected with the basis B(P)
of (P,U) via s(z) = P, for each z € A, we see, that knowing the basis of the
competence space and the interpretation of the union-stable problems on the basis
of the competence space is sufficient for constructing the basis, the surmise-function
and thus the performance space itself. The consequences of this finding are of con-

siderable practical use when a union-stable diagnostic has to be established.
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5 Empirical application

To test the applicability and utility of the competence-performance conception, se-
veral empirical investigations were conducted (Korossy, 1993). In this section we
present a reanalysis of an empirical study reported by Korossy (1996)°. The know-
ledge modeling developed and tested in that study is based on the relatively weak
concepts of a competence structure and a representing performance structure. For
the purpose of illustrating the appropriateness of the above introduced modeling
approach for practical application, we adopt from Korossy’s study the slightly revi-
sed competence structure as a competence space (IC,U), and select from the family
of problems exactly those problems that prove to be union-stable in (IC,U) so as
to obtain a union-preserving performance space (P,U). The resulting union-stable
diagnostic, then, is examined for aspects of validity on the basis of the collected
data.

Because the principles of modeling and details of the study are reported in Korossy
(1996), the following presentation is restricted to the more formal aspects specific
to the knowledge modeling in the framework of a union-stable diagnostic. First,
however, we briefly describe the knowledge domain selected for the study and the

goals of the domain-specific modeling.

Aim: Modeling and validating a network of learning goals

As a specific knowledge domain the area ”geometry of right triangles” was selected.
This area is a standard section in nearly every curriculum of teaching geometry.
The background of the study is a German high school mathematics curriculum
(”Bildungsplan fiir das Gymnasium”, Ministerium fiir Kultus und Sport, 1984),
that sets as teaching/learning goals the following topics in the selected knowledge

domain:

e Knowledge of the three Pythagorean Theorems, in German called ”Satz des Py-
thagoras”, "Kathetensatz”, and "Hohensatz”, that refer to the three theorems

P, K, and H listed in Table 1;

e as applications of these theorems: transformations of areas (e.g. constructing
a square with the same area as a given rectangle) and calculations of lengths

(e.g. the altitude in an equilateral triangle).

6The study reported in this article was supported by the Deutsche Forschungsgemeinschaft
under Grant Lu 385/1.
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Table 1: The three Pythagorean Theorems P, K, H

Theorem P (Pythagoras’ Theorem):
In each right triangle, the sum of the squares of the legs is equal to the square
of the hypotenuse.

Theorem K:
In each right triangle, the square of each leg is the product of the hypotenuse

and the leg’s projection on the hypotenuse.
g

Theorem H:
In each right triangle, the square of the altitude to the hypotenuse is equal to
the product of the segments into which the altitude divides the hypotenuse.

For these topics a small network of teaching/learning goals is to be reconstructed as
a competence space. Table 2 describes the teaching/learning goals to be included

with the respective abbreviation and meaning.

Table 2: Set {P,K,H,A,Z, T} of teaching/learning goals

Abbreviation Domain-specific meaning
P knowledge of the Satz des Pythagoras
K knowledge of the Kathetensatz
H knowledge of the Hohensatz
A knowledge about calculating the area of a right-angled triangle
Z knowledge of constructing a square with the same area as a given
rectangle
T knowlege of properties of tangents on circles

The three teaching/learning goals P, K, H correspond to the topics Satz des Pytha-
goras, Kathetensatz, Hohensatz listed in the Bildungsplan (see Table 1); the three

remaining goals may be understood as specifying the required applications: A as
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an application of the theorems above in the context of calculating the area of a
(rectangled) triangle; Z as an application in the context of transforming a rectangle
into a square with the same area as the rectangle; T' as an application in the context

of calculations with circles, whereby properties of tangents on circles are needed.

With respect to these preconditions of the Bildungsplan and the teaching/learning
goals defined in Table 2, the specific goals of knowledge modeling to be presented

in this section can now be explicated in the following way:

1. A curricular network of teaching/learning objectives is to be modeled as a

competence space;

2. suitable problems (i.e. problems with union-stable interpretations in the mode-
led competence space) are to be selected and the resulting performance space

is to be designed;

3. the empirically observable solution patterns are to be designated and compared
with the hypothetically expected solution patterns (the performance states),
and by way of this comparison aspects of the empirical validity of the modeling

are to be collected.

In the following two subsections the results of the modeling process (rather than the

modeling process itself) are described.

Modeling the competence space

The teaching/learning goals defined in Table 2 were conceived in our study as ele-
mentary competencies. With respect to this set & = {P,K,H,A,Z,T} of ele-
mentary competencies the following competence space (K,U), with basis B (KC) and

surmise function o : € — p(p(€)) is defined:

B(K)={K,H, PK,PH, KA HAKZ HZ,PKTA KHTA}"

o:& — p(p(f))
ccé P K | H A Z T
o(e) |{PK, PHY{K}|{H}|{KA,HA}\{KZ,HZ} {PKTA,KHTA}

The competence space (IC,U) contains 31 competence states.

TFor a shorter notation we write the competence states as sequences of letters instead of as sets.
In full, for B(X) we would write:

B(K) = {{K},{H},{P,K},{P,H},{K,A},...,{P,K,T,A},{K,H,T, A}} .
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Constructing a representing performance structure

As a first step in establishing a performance representation of (1C,U) from a set of
10 geometry problems involved in the original study, the set A := {a,b,¢c,d,e} of
the five problems presented in Figure 1 is selected.

Problem a
Given: g=Tcm, h=4cm
h
Calculate: p
p q
Problem b
Given: p=4cm,qg="T7cm
A
\ \ Calculate: area A
P q
Problem c
Given: a=8cm,qg==6cm
a
- Calculate: p
P q
Problem d
Given: a rectangle
Construct a square with the
same area as the rectangle.
Problem e
Giwen: PM =6cm,r=4cm
Calculate: area A

Figure 1: The five geometry problems in .A.
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Based on a solution analysis (see Appendix A.1) this set of problems is interpreted in
KC by an interpretation function k: .4 — p(K) . Table 3 shows for each problem
z € A a generating set ¢, C & for k,;, the basis interpretation k, and for the
purpose of illustration additionally the surmise interpretation kJ and the minimal
interpretation k, of z, whereby it is presupposed that ks =1 ks =1 kS =1 ks .
According to Proposition 4.10 each problem z € A is union-stable. In fact, from
the original set of 10 problems exactly those are selected that can be interpreted in

(1C,U) as union-stable problems.

Table 3: Minimal, surmise, basis interpretation for the problems and the represen-
tation function p: B(IC) — p(A)

reA Pz K H PK PH KA HA KZ HZ PKTA KHTA
a {H, P} & & * + + + +
b {A} B & + +
¢ {K,P} & ¥ & + + + +
d {Z} @& &
e {T} ® ®
p(x) ¢c a a ac bc ab cd ad abce abce

¢, generating set for the problem concept kg
+ basis interpretation k, of problem z € A
X surmise interpretation k7 of z

® minimal interpretation ky of z.

The defined interpretation function & uniquely determines the representation func-
tion p: K& — p(A), which is union-preserving as a consequence of the union-stable
problems. According to 4.3 the performance structure (A, P), with P :=p(K),isa
performance space (P,U). By 4.5, p can be restricted to the basis B(XC) of the com-
petence space (K,U). This restricted representation function p : B(K) — p(A)

can also be found in Table 3.

In accordance with Proposition 4.12, the basis B(P) of (P,U) can be found within
the images of B(IC) under the representation function p: For each z € A select from
the image set p(B(KC)) the family p(k,) C p(B(K)) and take the minimal states of
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p(k;). By 4.12, P, = Min p(k,). Table 4 shows for each z € A the families p(ky)
and P, = Min p(k,)8.

The basis B(P) of the performance space is immediately obtained through B(P) =
U{P: | = € A} from Table 4:

B(P) = {a,c,ab, ad, bc,cd, abce} .

A

Moreover, with the families P, shown in Table 4 for all z € A, we have generated
the surmise-function s for the performance space (P,U); recall that s is related
to the families P, through s(z) = P, for each z € A according to Doignon &

Falmagne’s theorem (see Section 1).

Table 4: Construction of the families P, = s(z) = Min p(k;) using the basis
interpretations %, of the problems z € A

z €A p(ks) P: = s(z) = Min p(k.)
a {a,ac, ab,ad, abce} {a}
b {bc, ab, abece} {ab,bc}
c {c,ac,be, cd, abce} {c}
d {cd,ad} {ad, cd}
e {abce} {abce}

The performance space (P,U) contains 15 performance states. It is depicted in
Figure 2 as a Hasse diagram (with respect to C). Under each performance state the
corresponding class of competence states is placed. Note that Figure 2 illustrates
the grain size of the performance representation for the given competence space and
thus forecasts the accuracy of individual competence diagnosis in the case that the

established modeling is accepted as being valid.

The hypothesis for the reanalysis of the experimental data is, that the observed solu-
tion patterns on the problems should agree with the theoretically expected solution

patterns, i.e. with the performance states of P.

81t should be remarked at this point that a more convenient procedure for obtaining P, resp.
s(z) is to take first the minima k, = Min (k;) = Min (k2) of the problem interpretations and
then Min p(k,). This procedure can easily be verified by looking at Tables 3 and 4.
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abede
PKHTAZ
PKTAZ,KHTAZ

/N

abed abce
PKHAZ PKHTA
PKAZKHAZ,PHAZ PKTAKHTA

abd / acd abc
PKHZ PKHA

PKZKHZPHZ PKAKHAPHA
/ / / \
/ ac /

PKH KA
/ PK,KH,PH
H \ / K
0
Figure 2: Performance space (P,U) as a Hasse diagram relative to C; under each

performance state the class of corresponding competence states is depicted.

Method

Problems

Korossy (1996) included in his performance representation 10 geometry problems®.
For the reanalysis presented here, from the original set of 10 problems those five
problems (see Figure 1) that are union-stable in (/C,U) were selected in order to

construct a union-preserving performance representation of (1C,U).

®In the original study the subjects were tested in groups of 6 to 8 persons. In order to minimize
the ”knowledge transfer” within the test groups, the neighbors were presented different but parallel
versions of each problem. Since no obvious differences between the two parallel groups were
observed, the data were pooled for evaluation.
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Same-type geometry problems as the 10 problems applied in the original study for
the representing performance structure of the competence space (K,U) are likely
to be found in every textbook on elementary geometry. Most of those problems can
be solved using different approaches. Nevertheless, according to the curriculum-
oriented competence modeling only solution ways using knowledge from the area of
the Pythagorean theorems were taken into consideration for the interpretation of the
problems; other solution approaches (e.g. applying properties of similarity between

rectangled triangles or trigonometrical functions) are excluded.

All 10 problems (and thus the five problems considered here) were ordered within the
original test in such a way that for each pair of problems comparable with respect
to their (theoretically hypothesized) difficulty the more difficult problem did not
precede the less difficult problem®. This restriction facilitates learning effects that
may generate solution patterns incompatible with the theory, but it should prevent
demotivating effects than can occur when the first problems are too difficult. The

solution paths taken into consideration are presented in Appendix A.1.

For each problem the available solution time was limited to 10 minutes; moreover,
a minimum solution time of at least 3 minutes was fixed for each problem in order
to prevent careless errors and to provide a maximal chance for actualizing existing

competencies.

Subjects

The experiment was conducted with 62 subjects (36 male, 26 female) ranging in age
from 15 to 57. Ten persons were excluded from the evaluation because they applied
solution methods not included in the competence modeling. There remained 52

subjects (31 male, 21 female) for the evaluation.

Procedure

The experiment was announced as an ”investigation on solving geometry problems”.

It was carried out as a series of group tests each with 6 to 8 persons.

First the subjects were given written instructions for the experimental procedure.
They were asked to solve the problems in the given sequence, to stay within the
prescribed solution time for each problem, and to avoid careless errors. After distri-
buting the tests each student worked on the problems according to his/her individual

speed.

10Problem y was defined as “more difficult than” a problem z, when z occurs in each clause for
¥, but not conversely. Obviously this relation allows consistent sequencings of the problems.
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Results

While the theory presupposes only two-categorial solution behavior (correct/in-
correct), the experimental method (paper and pencil) provided additional infor-
mation on the applied solution approaches and solution ways. This information was
registered and evaluated with regard to the possibility of validating the solution ana-
lyses of the problems. Table 6 in Appendix A.2 shows for each person the observed
solution way for each problem z € A and the solution pattern for the entire set 4

of the five problems.

The solutions were evaluated under two different aspects:

Evaluation 1: The solution of the problem is entirely correct.
Evaluation 2: The solution way of the problem is correct, but the numerical result

is incorrect (e.g. as a result of a computational error).

An overview of the empirically observed solution patterns with respect to the two

ways of evaluation is provided by Table 5.

Table 5: Frequency of the performance states

Evaluation 1 Evaluation 2
Performance state solution way correct solution way correct
num. result correct num. result incorrect
0 9 9
a 5 4
¢ 1 —
ad — —
ab 4 3
ac 1 1
ed —_ . —
be — 1
abd — —
acd — _
abe 12 12
bed —_ —
abed 3 2
abce 7 10
abede 6 8
not predicted 4 2
total: 52 52
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As Diintsch & Gediga (1995) emphasized there are some serious problems of evalua-
ting the congruence between the expected and the observed solution patterns. The
data evaluation in Korossy (1996) is also confronted with these problems. There,
two possible ways of a qualitative analysis of the model violating solution patterns
are followed and discussed. In the present case, however, we may be allowed to
set these problems aside for two reasons: First, our purpose is only to illustrate
the principles of an application of the theory developed in the preceding sections;
second, the results shown in Tables 5 and 6 appear to have such a high face validity

that a statistical evaluation does not seem to be necessary at this point.

As can be seen from Table 5, for all but four subjects the solution patterns following
evaluation 1 are in accordance with the expected performance states. For evaluation
2 only two non-expected solution patterns were observed. Moreover, 9 of the 15
performance states were observed following evaluation 1 as well as 9 performance

states under evaluation 2.

Discussion

The reanalysis of an empirical study reported in Korossy (1996) was presented pri-
marily for the purpose of illustrating the theoretical concept of a union-stable dia-
gnostic introduced as an extension of Doignon & Falmagne’s concept of a knowledge
space. The knowledge domain of the Pythagorean theorems was to be designed in
the form of a competence space and a union-preserving empirical representation in
the form of a performance space. For this, we used a slight modification of the com-
petence structure in the original modeling and selected five problems of the original

study in order to get a union-stable diagnostic.

In principle, the original experiment can be regarded as a validation study for the
modified competence modeling as well. Whereas the results of the original study
based on the whole set of ten problems were to be considered critically in view of the
validity of the established modeling (see Korossy, 1996), for the modified model ana-
lyzed above the high congruency of the empirically observed and the theoretically
expected solution patterns could be taken as an indication for the psychological va-
lidity of the underlying competence model and the task analyses. Of course, if there
should be further interest in the modeled competence space, the validation process
would have to be continued by establishing another performance representation and

testing the performance states against the observed solution patterns.

Whenever the competence space is accepted as being psychologically valid, then, in
connection with a suitable performance representation, it can be used as a diagnosti-
cal framework for an economic qualitative competence diagnosis and goal-oriented

adaptive learning/teaching processes. Moreover, because of the union-stable struc-
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tures on the competence and on the performance space and the union-preserving
representation function, much of the practical work can be done in a flexible, con-
venient, and ecomical way by making use of the equivalent concepts of the (compe-

tence/performance) space, the basis of the space, and the according surmise system.

6 Summary and general discussion

In marked contrast to most of the contemporary systems for knowledge representa-
tion, in Doignon & Falmagne’s knowledge structures theory knowledge representa-
tion and knowledge diagnosis are closely related. However, the knowledge structures
theory suffers from the serious deficiency that the core of the theory is built on purely
behavioral concepts that provide no reference to existing theories on domain-specific
knowledge-related behavior. Also the approaches of Falmagne et al. (1990), Doignon
(1994), and Diintsch & Gediga (1995) to supply knowledge structures with under-
lying sets of abstract skills seem to be unsatisfactory because they merely generate

recodings of empirical data in other structures.

The knowledge structures approach at the present state of development ignores that
there exist numerous specific theoretical models for observable behavior in solving
certain types of problems that seem appropriate for use in knowledge modeling
within the structural approach. With the competence-performance conception for
the knowledge structures theory outlined in this paper, an attempt has been made to
develop a framework for including available domain-specific theories for the task of
knowledge modeling. The central idea is that appropriate specific theories should be
utilized for the modeling of genuine interpretatively meaningful ”skills”, capabilities

or "competencies” underlying the observable behavior.

The competence-performance approach to the theory of knowledge structures as-
sumes (see Section 2) that domain-specific knowledge can be modeled upon two
related levels: on the performance level, as a family of certain subsets of a domain-
specific set of problems, and, on a non-observational competence level, as a family
of competence states. Each person is assumed to be (at one time) in exactly one
competence state that enables solving certain problems and not others. The family
of competence states is presupposed to be established on the basis of domain-specific
theorizing. The subset of solvable problems is called the performance state of this
person. The relationship of the two modeling levels is constructed in a determi-
nistic way: Each problem is mapped by an interpretation function to that subset
of competence states each of which enables solving the problem (this accounts for
alternative solution ways of the problem); this assignment, conversely, determines a

representation function that maps each competence state to the subset of problems
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solvable in that state (the representing performance state). The family of compe-
tence states, the set of problems, the family of performance states, the interpretation
and the representation function together constitute the concept of a diagnostic that

is the basic concept of the competence-performance approach.

A diagnostic can be structurally enriched by assuming that the family of competence
states as well as the family of performance states are structured by order relations or
algebraic operations and that the representation function is a structure-preserving
morphism. For example, when the families of the competence states and the perfor-
mance states are constituted as partially ordered sets, and when the representation
function is order-preserving, then we get the concept of an order-stable diagnostic.

In Section 3 diagnostics of this type are briefly described and analyzed.

Doignon & Falmagne’s theory of knowledge spaces is integrated into the competence-
performance approach by replacing the concept of a knowledge space by the two
concepts of a competence space and a performance space and requiring the represen-
tation function to be union-preserving. This approach constitutes the concept of a
union-stable diagnostic (see Section 4). The advantageous property of a union-stable
diagnostic is that, on the competence level as well as on the performance level, se-
veral equivalent concepts for the task of modeling or storage are available (according
to Doignon & Falmagne’s theory) and that the union-preserving representation func-
tion guarantees the structural correspondence of these various modeling concepts on
the competence level to those of the performance level. Analysis of the conditions
for establishing a union-stable diagnostic reveals that, given a competence space,
a representing union-preserving performance space can be constructed step by step
by including domain-specific problems that satisfy certain structural demands. The
central concepts and results are illustrated by (the reanalysis of) a study that is

reported in Section 5.

Some advantages of the competence-performance conception for the knowledge struc-

tures theory seem obvious:

(1) Whenever a competence model based on a domain-specific theory (in our case
a curriculum in elementary geometry) has been established, a theory-guided step-
by-step construction of a structure-preserving performance representation can be
tackled. Due to the explicitly defined relationship between competence and perfor-
mance a domain-specific knowledge modeling can immediately become the object
of validation studies by comparing the competence-based performance states with
the empirically observed solution patterns on the selected problem set. Performance
states incorporate theoretically founded hypotheses on the expected solution pat-
terns; violations of hypotheses can be theoretically analyzed (both in contrast to

the behavioral versions of the knowledge structures theory).
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(2) Whenever a domain-specific theory is utilized for establishing the competence
model, this theory is, by way of validating the competence model, given a chance for
empirical validation. When, for example, a certain curriculum theory that suggests a
definite sequencing of instructional objectives is utilized for a competence modeling,
then any successful empirical validation of that competence model provides empirical
support for the curriculum theory as well. In this sense, the competence-performance
conception of knowledge modeling may be regarded as an opportunity for empirical

theory-validating.

(3) Whenever a competence modeling has been accepted as being psychologically
valid, then, in connection with a suitable performance representation, it can be used
as a diagnostical framework for qualitative competence diagnosis and goal-oriented

adaptive learning/teaching processes.

Nevertheless, several restrictions of the competence-performance conception can
hardly be overlooked. Perhaps one of the stronger objections to the proposed ap-
proach is that the tools for knowledge modeling available at this developmental state
of the theory seem rather restricted. For-example; compared with the-demands-for
a subtle knowledge modeling required by some cognitive theories (apart from the
difficulties for evaluation mentioned above), the concept of a state is a rather weak
concept; also, the interpretation of a problem within a competence structure seems
to be too inflexible in several aspects. In this respect, the modeling approach should
be considerably enriched in order to meet the requirements of detailed knowledge

diagnosing.

On the other hand, it should be clear that the modeling of competence-performance
structures should be conducted in reference to a domain-specific theory; it cannot
take the place of domain-specific theorizing. The examples described in Section 1,
and the study reported in Section 5 may clarify this point: The applied theory
has to reveal the specific characteristics of the to-be-modeled individual knowledge;
it must determine which (kind of) states of individual knowledge are to be taken
into consideration, and it should guide the selection of problems suitable for an
adequate empirical representation. Then, the competence-performance approach
provides an apparatus for constructing an explicit relation between competence and
performance, that is, for relating the applied theory to the level of empirical obser-
vation. In this respect, the usefulness of the competence-performance conception

has to be proven by the successful cooperation with domain-specific research.
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A Appendix

A.1 Solution ways for the problems

In the following the solution ways for problems a - e of Figure 1 are outlined. For
each problem the simplest alternative solution ways using the Pythagorean theorems
are presented; solution ways involving other mathematical methods (for instance
similarity of rectangled triangles or trigonometrical functions) are excluded with

respect to the curriculum selected for our study.

The definitions of the elements P, K, H, T, A, Z used as elementary competencies

are found in Table 2.
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Problem a: {PK,H}

h2
(H) h? = pg = P=?

hz 2 2 2 h2
(PI()G,2=h2+q2/\a,2=cq:>c= :q ﬁp_—_hj]_q —q=—

Result: p=~2.29cm

Problem b: {KA,HA}

(H) h*=pg = h=.Dq

(4) A= ch=(p+aFl

(K) a®=cg=(p+q)q = a=+/(p+4)
BP=cp=(p+qp = b=+/(p+9p

(4) A=gab=2(p+ 0l

(H) h?=pg = h=./pq

1 1 1
(A)  Apefy = 5Pk A Agjght = 50k = A= Alegy + Apghe = 50+ 9)VP

(PK) a®=h’+¢* rna’=(p+q)g = K =(p+q¢-=p; = h=\p]

(4) A=gch=(p+0)B

Result: A =~ 29.10 cm?
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Problem ¢: {K,PH}

a’

(K) a?®=cqg = c=

q

a?

> p:—-——q

q

(PH) a? =R+ @? AR =pg = p=

2

a —9q

2

q

Result: p=~4.67cm

Problem d: {KZ,HZ}

(KZ)

(HZ)

The length of the side of the square is about 4.27 cm.
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Problem e: {PKTA,KHTA}

Let By and B; be the tangential points of the tangents from P to the circle;

PM =:¢c; PUNBB, = {Q};B1Q =QB; = h;PQ =:p; QM =: ¢

It apparently holds: MBy, = MBy =r

Further the property of tangents holds:
(I'y PByLMByAPByL MB,,ie.
APB1M and APMB; are rightangled.

(This property is presupposed for every solution way.)

4
(PK) rt=qg? +h2 Ar?=cq = h2=r2—2—2 e h:% 12

2

(4) A=2. -;—(c Q= (e~ D)V = (e - E T

c

2 2
(KH) i =cqnhi=pg = R=(c~ =)= = h= "y

(A) as above

Set: PB; = PBy, =:b

1
(PA) 2 =b247r% 4 ApPMB, = 51)7‘ => AaPMB, = % ¢ —r?

1 172
(A) AAQM31 = -2-qh = -2“(‘:--2\/ ¢ —1r?

T
A=2-(AapmB, — AnQMB,) = c_Z(CZ —12)/c? — 72

Other solution ways are possible if the applied theorems are used

repeatedly.

Result: A = 9.94c¢m?
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A.2 Solution patterns

The following Table 6 provides the protocols of the utilized solution ways in the
geometry test. For each subject and each of the five evaluated problems the applied

solution way is presented (as far as identifiable).

The following denotations are used in Table 6:
() The solution way is correct, but the numerical result is incorrect;
— The problem is not solved or not correctly solved;

* A non-modeled solution way or an additional solution way is applied.
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Table 6: Solution patterns of the test

Problem (current number in the test) Solution Predicted
Subjects a (4) l b(9) l c(5) l d(7) ] e (13) pattern | yes(+)/no(-)
01 - -~ - - - ) +
02 H - - -~ - a +
03 - - - - - 9 +
04 H HA PH - PxTA abee +
05 - - - - - ] +
06 H HA K KZ PxTA abede +
07 H - —_ - - a +
08 H HA (PH) - (P xTA) ab(ce) +(+)
09 H - PH - PHxTA ace -
10 - - - - - 0 +
11 H HA PH HZ - abed +
12 - - - - - 0 +
13 H HA K - - abe +
14 - - - - - 0 +
15 PK - - - - a +
16 H HA K KZ (PxTA) abed(e) +(+)
17 - - - - - [) +
18 H HA PH - - abe +
20 - (PKA) * - - (b)c +(+)
22 H HA PH HZ PHxTA abede +
23 H (HA) - - - a(b) +(+)
24 H HA K - KHTA abee +
26 H HA (PH) HZ PxTA ab(c)de -(+)
30 H HA,PKA PH HZ PxTA abede +
31 H (HA) PH - PxTA a(b)ce -(+)
32 - - - - - (1] +
33 - - - - - ¢ +
34 - *xA Px - PxTA bce -
38 H HA K - - abc +
39 H HA - - - ab +
41 H HA PH HZ *PT A abede +
42 H - - - - a +
43 H HA - - - ab +
44 H HA Px - - abe +
45 H HA PH - - abe +
46 * - * - - ac -+
47 Px HA K HZ PKTA abede +
48 H HA PH HZ - abed +
49 H HA PH HZ PKHTA abede +
50 H HA PH - - abe +
51 H PKA K - PKHTA abee +
52 H HA PH - - abe +
53 H HA (PH) - - ab(c) +(+)
54 H HA PH - PxTA abee +
55 * PxA * - PxTA abce +
58 H PHA PH - PH«TA abee +
58 H HA PH - (PKTA) abe(e) +(+)
59 H HA K - PKHTA abee +
60 H HA PH - - abe +
61 H HA PH - - abe -+
62 H HA PH - - abe +
63 H HA PH - - abe +
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