The Development of Complex Problem Solving and its Relation to Reasoning, Age and Gender.

Gidon Frischkorn, Samuel Greiff & Sascha Wüstenberg
The Development of Complex Problem Solving (CPS)

- Introduction
 - Theory
 - Research Questions
- Methods
 - Design and Procedure
 - Statistical Analyses
- Results
- Discussion
Introduction

- How do cognitive abilities develop in general?
 - Cognitive abilities progress from birth until the end of late adolescence (Nettleback & Burns, 2010)
 - Development of basic cognitive skills (e.g. Processing speed & Working Memory) enhance the development of more complex cognitive skills (e.g. Reasoning Ability; Fry & Hale, 1996)

PS = Processing Speed; WM = Working Memory; RA = Reasoning Ability
• Introduction

 - Implications for CPS development
 - CPS skills progress with students growing older
 - Development of CPS may rely on less complex cognitive abilities (e.g. Reasoning abilities)
 - Age plays an important role in CPS development
The Development of Complex Problem Solving and its Relation to Reasoning, Age and Gender.

• Research Questions (RQs)
 - RQ 1: How does CPS develop over time?
 - CPS should develop linearly over time (Stelzl et al., 1995)
 - RQ 2: Prediction of CPS by Reasoning Ability (RA)
 - RA should show positive relations to initial CPS skills (Wüstenberg, Greiff & Funke, 2012)
 - b) RA should predict CPS development positively
 - RQ 3: Age and Sex differences in CPS & CPS development
 - a) Older students should have better CPS skills but show less CPS development (Nettleback & Burns, 2006; Molnár, Greiff, & Csapó, in press)
 - b) Males are expected to show better CPS performance than girls, regarding development no specific assumptions were made (Wüstenberg, Greiff, Molnár, & Funke, submitted)
• **Methods**

 – Participants: 277 students (56.0 % female, M(age) = 13.6)

 – Measures:

 ➢ CPS: 8 MicroDYN Tasks

 ➢ RA: Culture-Fair Test (CFT); Cognitive Abilities Test (CAT)

 – Design:

 ➢ 3 Measurement Points (about a year apart)

 ➢ CPS was assessed at all measurement Points

 ➢ CFT on first measurement point; CAT on second measurement point
• Methods
 - Statistical Analyses
 - CPS development was analyzed with latent-growth curve models (LGCM; Muthen & Khoo, 1998) and RA, age and sex as time invariant predictors
• Results

 – Measurement Models (MM)
 - For CPS MMs were computed with the scores of all items aggregated to three parcels
 - For RA the MM was computed with global scores of CFT & CAT

<table>
<thead>
<tr>
<th>MM</th>
<th>χ^2</th>
<th>df</th>
<th>p</th>
<th>χ^2/df</th>
<th>CFI</th>
<th>TLI</th>
<th>RMSEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAcqu (1)</td>
<td>0.410</td>
<td>1</td>
<td>0.52</td>
<td>0.41</td>
<td>1.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>KAcqu (2)</td>
<td>1.023</td>
<td>1</td>
<td>0.31</td>
<td>1.02</td>
<td>1.000</td>
<td>1.000</td>
<td>0.010</td>
</tr>
<tr>
<td>KAcqu (3)</td>
<td>0.029</td>
<td>1</td>
<td>0.86</td>
<td>0.03</td>
<td>1.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>KAppl (1)</td>
<td>1.118</td>
<td>1</td>
<td>0.29</td>
<td>1.12</td>
<td>0.998</td>
<td>0.995</td>
<td>0.031</td>
</tr>
<tr>
<td>KAppl (2)</td>
<td>0.059</td>
<td>1</td>
<td>0.08</td>
<td>0.06</td>
<td>1.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>KAppl (3)</td>
<td>1.638</td>
<td>1</td>
<td>0.20</td>
<td>1.64</td>
<td>0.997</td>
<td>0.991</td>
<td>0.053</td>
</tr>
<tr>
<td>RA</td>
<td>0.546</td>
<td>1</td>
<td>0.46</td>
<td>0.55</td>
<td>1.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
• **Results**

RQ 1: Development of CPS

Model Fit: $\chi^2(149) = 205.715$, $p < .01$, CFI = .962, RMSEA = .037

- CPS developed linearly over time (Mean linear slopes - L)
- Initial CPS performance was related positively (Correlation between intercepts)
- CPS development was related positively (Correlation between linear slopes)
- Initial Performance in CPS was related negatively with CPS development

Discussion
• **Results**

RQ 2: Relation of RA to CPS and its development

Model Fit: $\chi^2(205) = 261.111$, $p < .01$, CFI = .965, RMSEA = .031

- RA predicted initial CPS performance positively
- RA predicted CPS development only partly (due to large standard errors)
• Results

RQ 3: Relation of age and gender to CPS and its development

Model Fit: $\chi^2(205) = 261.111$, $p < .01$, CFI = .965, RMSEA = .031

- Age showed positive relations to initial CPS & partly negative relations to CPS development
- Sex showed small mostly non-significant relations to initial CPS and CPS development
Summary of all Results

- RQ 1: CPS showed linear development over time
- RQ 2: Prediction of CPS by Reasoning Ability (RA)
 - a) RA positively predicted initial CPS skills
 - b) RA partly predicted CPS development positively
- RQ 3: Age and Sex differences in CPS & CPS development
 - a) Older students had better initial CPS skills but showed less CPS development
 - b) No gender differences were indicated in present results
• Discussion

 – Negative Relation of CPS Intercept and Slopes
 - Students with better initial CPS showed less CPS development
 - Negatively accelerated development

 – Large standard errors
 - Population is maybe too small
 - Replication is needed

→ Nevertheless the present investigation showed some promising results regarding CPS development
Thank you very much for your attention!

Further Questions?
References

