
Version of 19 July, 2002 1/15

The Eyelink Toolbox:

Eye Tracking with MATLAB and the Psychophysics Toolbox.

Frans W. Cornelissen 1, Enno M. Peters 1, John Palmer 2

1Laboratory of Experimental Ophthalmology, School for Behavioral and Cognitive Neurosciences (BCN)

University of Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands.

2Psychology, University of Washington, Box 351525, Seattle WA 98195-1525, USA

Running head: The Eyelink Toolbox

For the Eye Tracking issue

Corresponding author:

Frans W. Cornelissen

Laboratory of Experimental Ophthalmology

School for Behavioral and Cognitive Neurosciences (BCN)

University of Groningen

PO Box 30001, 9700 RB Groningen

The Netherlands

Tel: +31 50 3614173

Fax: +31 50 3611709

E-mail: f.w.cornelissen@med.rug.nl

mailto:f.w.cornelissen@med.rug.nl

Version of 19 July, 2002 2/15

Abstract

The Eyelink Toolbox software supports the measurement of eye movements. The toolbox provides an

interface between a high-level interpreted language (MATLAB), a visual display programming toolbox

(Psychophysics Toolbox) and a video-based eyetracker (Eyelink). The Eyelink Toolbox enables experimenters

to measure eye movements while simultaneously executing the stimulus presentation routines provided by the

Psychophysics Toolbox. Example programs are included with the toolbox distribution. Information on the

Eyelink Toolbox can be found via http://psychtoolbox.org/.

Keywords

Eye-movements, psychophysics, MATLAB, Psychophysics Toolbox, software

http://psychtoolbox.org/

Version of 19 July, 2002 3/15

Introduction

Measuring eye-movements during psychophysical tasks and experiments is important for studying eye-

movement control, gaining information about a level of behavior generally inaccessible to conscious

introspection, examining information processing strategies, as well as controlling task performance during

experiments that demand fixation or otherwise require precise knowledge of a subject's gaze direction (e.g.

Cornelissen & Dobbelsteen 1999, Brenner & Cornelissen 2000). Eye-movement recording is becoming a

standard part of psychophysical experimentation.

Whereas eye-tracking techniques exist that rely on measuring electrical potentials generated by the moving

eye (electro-oculography) or a metal coil in a magnetic field, such methods are relatively cumbersome and

uncomfortable for the subject (e.g. because electrodes have to be attached to the head or a coil has to be

placed on the cornea). A new generation of eye-trackers is now available based on the non-invasive recording

of images of a subject's eye using infra-red sensitive video-technology and relying on software processing to

determine the position of the subject's eyes relative to the head. As these trackers are video-based, there is no

need for direct contact with the subject's eyes, making these trackers much more suitable for routine eye-

movement recording during longer sessions. By combining the information on eye-position with a measure of

head-position, estimates of gaze position on a display can be obtained allowing the creation of gaze-

dependent displays.

Eyelink Gazetracker

 The Eyelink Gazetracker (SR Research Ltd., Mississauga, Ontario, Canada) is one of these video-based

eye trackers and is used in research fields such as psychology, ophthalmology, neurology, and ergonomics.

The Eyelink uses two high-speed cameras (CCD sensors) to track both eyes simultaneously. A third camera

(also a CCD sensor) tracks four infrared markers mounted on the visual stimulus display, so that head motion

can be measured and gaze position can be computed. The cameras produce images at a sampling rate of

Version of 19 July, 2002 4/15

250 Hz (4 ms temporal resolution). The Eyelink uses a PC with dedicated hardware for doing the image

processing necessary to determine gaze-position. Pupil position is tracked by an algorithm similar to a centroid

calculation, with a noise-limited resolution of 0.01° or less, and velocity noise of less than 3 deg/sec

(manufacturer's specifications). An optional heuristic filter (Stampe 1993) removes single-sample noise

artifacts and does not affect measured saccade velocity and acceleration. Pupil position is mapped to a head-

referenced coordinate system by a biquadratic mapping function (Sheena & Borah 1981, Stampe 1993) for

two-dimensional eye tracking, or by a quadratic function for one-dimensional eye tracking. Head position data

is then combined with the head-referenced data to compute the true gaze position on the stimulus display.

The optical head tracking system has extremely low angular noise, and therefore does not appreciably

increase the final noise level of the system.

The Eyelink communicates via a high-speed ethernet connection with a separate computer (Macintosh or

PC) that performs the stimulus display. The Eyelink system parses the eye-movement data on-line and in real-

time so that information on eye position is available almost instantaneously. Average delays from eye

movement to position data availability are 6 ms with heuristic filtering disabled, and 10 ms with filtering enabled

(manufacturer's specifications). This allows the creation of (near) real-time gaze contingent applications (e.g.

Cornelissen & Dobbelsteen 1999, Tant, Cornelissen, Brouwer & Kooijman 2002). The parser also provides

information on fixation and saccade events and associated statistics immediately after the events have been

completed.

One limitation of the EyeLink is that there is considerable trial-to-trial variability in the estimate of absolute gaze

position. For example, typical measurements of the standard deviations of gaze position at fixation are 0.5°

horizontal and 1.5° vertical. This variablity may be due to slippage of the headmounted system over time.

This problem can be minimized by using fixation position at the beginning of each trial to "correct" the gaze

estimate (“drift correction”). This method provides good relative position estimates within a trial at the cost of

information about absolute position across trials.

Version of 19 July, 2002 5/15

Stimulus presentation

Most eye-movement experiments require displaying visual targets for the subject to track or look at.

Computer displays have become virtually standard equipment for doing visual psychophysics since these allow

precise software specification of the stimulus. While low-level programming languages such as C enable the

required accuracy in control of timing, luminance and color output of displays, they do not provide a friendly

programming environment. The Psychophysics Toolbox (Brainard 1997, Pelli, 1997) is a software package that

adds the ability for precise stimulus specification to MATLAB, a high-level interpreted language with extensive

support for numerical calculations (The MathWorks, 1993), allowing for rapid and flexible programming of

psychophysical experiments.

We have developed the Eyelink Toolbox, a high-level interface between MATLAB and the Eyelink

Gazetracker. The toolbox enables one to measure eye movements while simultaneously executing stimulus

presentation routines provided by the Psychophysics Toolbox as well as other MATLAB scripts. The powerful

combination of the Psychophysics and Eyelink Toolboxes allows for a relatively fast and easy implementation

of experiments involving eye tracking (such as e.g. gaze-dependent displays).

Implementation of the toolbox

The toolbox consists of a combination of a MATLAB extension (MEX) file and code written in native

MATLAB language. The extension, which is partly based on proprietary low-level C subroutines provided by

the manufacturer of the eyetracker, can be called directly from MATLAB. For its timing and graphics

manipulation, the Eyelink Toolbox relies on routines of the Psychophysics Toolbox (Brainard 1997) and

VideoToolbox (Pelli, 1997).

The Eyelink Toolbox provides access to all Eyelink routines. A listing of the main commands and a short

description of their function is provided in table 1. In addition, the Eyelink Toolbox provides both integrated

routines for performing calibration and drift correction, as well as procedures written in native MATLAB

Version of 19 July, 2002 6/15

language that allow for a large degree of customization (e.g. of calibration targets and routines; see figure 1.).

To enable (near-) real-time gaze-dependent displays, the Eyelink parses the eye-movement data on-line, and

sends gaze data, as well as other data over the ethernet connection to the display computer. The Eyelink

Toolbox allows access to this information via a MATLAB structure. Table 2 lists the main fields of this structure

and provides a short description of its contents.

Tables 1 & 2 about here

The use of an interpreted language comes at a cost; native MATLAB code tends to run significantly slower

than comparable C code. The penalty of the overhead is about 4 microseconds per MATLAB statement (as

reported by the PsychToolbox' SpeedTest.m' routine). Nevertheless, the Eyelink Toolbox implementation, even

on a relatively old Power Macintosh with a 400 Mhz G3 processor, is fast enough to enable a near real-time

gaze-dependent display. Between eye movement and screen update there is a delay of about 20 ms1, of which

our tests indicate that almost all of it is due to the Eyelink hardware and software on the dedicated Eyelink PC.

A millisecond or less of the delay is due to network communication between the Eyelink and display

computers. Only a fraction of a millisecond is due to the overhead of using MATLAB in addition to the

underlying C-routines. Thus using the Eyelink Toolbox within the MATLAB environment, instead of directly

programming in C, adds little cost in terms of execution time. The MATLAB environment, by providing

extensive support for numerical processing, in principle also allows the post-processing of eye-movement data

within the same environment. At present, support for this additional use of MATLAB is not part of the Eyelink

Toolbox.

1 (We determined the delay from eye-movement to stimulus update to be about 20 ms. This was determined
using electro-oculography to independently record eye-movements and a photocell to measure stimulus-
update-related changes in light flux on the screen (Cornelissen & Kooijman, to be published).

Version of 19 July, 2002 7/15

Example and use

Figure 1 lists an example of a short MATLAB program that uses the Eyelink and Psychophysics Toolboxes

to create a simple gaze-dependent display. Step 1 in the example is the initialization of the Eyelink, step 2 the

opening of a graphics window using the Psychophysics Toolbox SCREEN routine. In step 3, Eyelink toolbox

default values are set and information about the graphics environment is passed onto the Eyelink mex routine

and in step 4 the Eyelink's integrated calibration and drift correction procedures are performed. In step 5, data

recording commences. In step 6, current gaze position as communicated by the Eyelink is used to show a

small dot on the display that moves with the subject's gaze. In case the Eyelink provides no valid gaze data

(e.g. during a blink), the screen is immediately blanked. In step 7, graphics window, data file and tracker are

closed.

Figure 1 about here

Documentation and availability

The Eyelink Toolbox can be downloaded via the web site http;//psychtoolbox.org/ and, like the

Psychophysics toolbox, is available for both the Macintosh and Windows operating systems1. Installation

consists of adding a single folder (approximately 1 megabyte) to MATLAB's collection of toolboxes. Help is

provided via MATLAB's regular conventions. The distribution includes example MATLAB code (such as the

program listed in figure 1). The C source code of the toolbox is available (though not for the proprietary

subroutines on which the toolbox is based). Note that the Eyelink Toolbox is neither provided nor endorsed nor

supported by the manufacturer of the Eyelink Gazetracker. The toolbox may be used freely for teaching or

research. It may not be used for commercial gain without permission by the first author of this paper.

Version of 19 July, 2002 8/15

Conclusion

The Eyelink Toolbox, in combination with the Psychophysics Toolbox, provides a fast, easy, interactive and

powerful means to develop research-grade eye-movement paradigms (e.g. Li, Brenner, Cornelissen & Kim,

2002, Huk, Palmer & Shadlen, 2002).

Acknowledgments

Eyal Reingold and Dave Stampe conceived and developed the Eyelink Gazetracker. We greatly appreciate

the effort David Brainard and Denis Pelli have undertaken developing the Psychophysics Toolbox (see

http;//psychtoolbox.org/). We thank Eyal Reingold, Francesco Maringelli. Erin Harley and two anonymous

referees of an earlier version of this paper for commenting on the manuscript.

Eyelink is a registered trademark of SR Research Ltd., Mississauga, Ontario, Canada. Macintosh is a

trademark of Apple Computer Inc. MATLAB is a trademark of The MathWorks Inc. PowerPC is a trademark of

International Business Machines Corporation. Commercial relationships: None.

Version of 19 July, 2002 9/15

References

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 437- 442.

Brenner, E. & Cornelissen, F.W. (2000). Separate simultaneous processing of egocentric and relative
positions. Vision Research, 40, 2557–2563

Cornelissen, F. W, & Dobbelsteen, J. (1999). Heading detection with simulated visual field defects. Visual
Impairment Research, 1999, 1, 71-84

Cornelissen, F. W. & Kooijman, A. C. The influence of artificial scotomas on eye-movements during visual
search. (to be published).

Huk, A. C., Palmer, J. & Shadlen, M. N. (2002). Temporal integration of visual motion information: Evidence
from response times. Poster presented at the meeting of the Vision Sciences Society, May 10-15,
2002, Sarasota, Florida, USA.

Li, H-C. O., Brenner, E., Cornelissen, F. W. & Kim, E. S. (2002) Systematic distortion of perceived 2D shape
during smooth pursuit eye-movements. (submitted).

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics. Spatial Vision, 10, 437- 442.

Sheena, D. & Borah, B. (1981). Compensation for some second-order effects to improve eye position
measurements. In D.F. Fisher, R.A. Monty, & J.W. Senders (Eds.), Eye Movements: Cognition and
visual perception. Hillsdale, NJ: Erlbaum.

Stampe, D. M. (1993) Heuristic filtering and reliable calibration methods for video-based pupil-tracking
systems. Behavioral Research Methods, Instruments and computers, 25, 137-142.

Tant, M. L. M., Cornelissen, F. W. Kooijman, A. C. & Brouwer, W. H. (2002). Hemianopic visual field defects
elicit hemianopic scanning. Vision Reseach, 42, 1339-1348

The MathWorks. (1993). MATLAB User's Guide. The MathWorks, Inc., Natick, MA.

Version of 19 July, 2002 10/15

Notes

1. The Eyelink Toolbox is compatible with both the first and second generation of Eyelink gazetrackers.

Version of 19 July, 2002 11/15

Figure captions

Figure 1. Listing of a short MATLAB program that uses the Eyelink and Psychophysics Toolboxes to create

a simple gaze-dependent display. See main text for details.

Table 1. Listing and description of the main commands available in the Eyelink Toolbox.

Table 2. Listing of the main fields available in the Eyelink data sample structure. Whether these fields are

actually filled with useful information depends on the settings of the Eyelink. This can be changed at run-time

using the 'command' command of the Eyelink Toolbox (see table 1).

Version of 19 July, 2002 12/15

Table 1.

Command Description of the function

'Initialize' Establishes an ethernet connection between the Eyelink PC and display

computer and initializes the Eyelink Gaze tracker.

'Initializedummy' Run in "dummy mode", which allows one to run (and e.g. debug) stimulation

programs without a Gaze tracker being connected.

'Shutdown' Close the connection to the Eyelink PC and Gaze tracker.

'Isconnected' Reports the status of the connection (connected, no connection, running in

dummy mode).

'Openfile' Opens a file on the Eyelink PC to store data and events in.

'Closefile' Closes the data file.

'Command' Sends a command string to the Eyelink PC (e.g. 'link_sample_data=GAZE' tells

the Eyelink to send real-time gaze data to the display computer).

'Message' Sends a message to the Eyelink PC (e.g. "Stimulus On").

'Initwindow' Provide information about the graphics environment (e.g. screen resolution) to

the Eyelink Toolbox.

'Eyeavailable' Reports which eye(s) is being tracked.

'Trackersetup' Perform integrated tracker set-up procedure.

'Dodriftcorrect' Perform integrated drift correction procedure.

'Startrecording' Starts recording eye-movement data.

'Stoprecording' Stops recording eye-movement data.

'Checkrecording' Reports whether the Eyelink is recording data.

'Newsampleavailable'

'Newfloatsampleavailable'

Report whether a new data sample (either in int or float format) is available (for

real-time purposes).

'Newestsample'

'Newestfloatsample'

Return the most recent data sample (either in int or float format).

Version of 19 July, 2002 13/15

Table 2.

Field Content

time Time stamp of sample.

flags Flags to define what data is included in each sample.

gx, gy Horizontal and vertical gaze position data (x and y) in screen coordinates (pixels) for

the left and right eyes (depending on whether they are actually being tracked).

pa Pupil size or area (depending on settings of Eyelink) of left and right eyes.

rx, ry Horizontal and vertical resolution of the gaze data (pixels per degree) for the left and

right eyes.

hx, hy Horizontal and vertical head-referenced eye-position data for the left and right eyes.

Version of 19 July, 2002 14/15

Figure 1.

% Short MATLAB example program that uses the Eyelink and Psychophysics
% Toolboxes to create a real-time gaze-dependent display.

% STEP 1
% Initialization of the connection with the Eyelink Gazetracker.
% exit program if this fails.
if (EYELINK('initialize') ~= 0)

return ;
end ;

% STEP 2
% Open a graphics window on the main screen
% using the PsychToolbox's SCREEN function.
screennr = 0; % use main screen
[window, screenRect]=SCREEN(screennr, 'OpenWindow' , 0);
white=WhiteIndex(window);
black=BlackIndex(window);

% STEP 3
% Provide Eyelink with details about the graphics environment
% and perform some initializations. The information is returned
% in a structure that also contains useful defaults
% and control codes (e.g. tracker state bit and Eyelink key values).
el=initeyelinkdefaults;

% make sure that we get gaze data from the Eyelink
EYELINK('command' , 'link_sample_data = LEFT,RIGHT,GAZE,AREA');
% open file to record data to
EYELINK('openfile' , 'demo.edf');

% STEP 4

% Calibrate the eye tracker using the standard calibration routines
EYELINK('trackersetup');
% do a final check of calibration using driftcorrection
EYELINK('dodriftcorrect');

% STEP 5
% start recording eye position
EYELINK('startrecording');
% record a few samples before we actually start displaying
waitsecs(0.1);
% mark zero-plot time in data file
EYELINK('message' , 'SYNCTIME');
stopkey=KbName('space');
eye_used = -1;

Version of 19 July, 2002 15/15

% STEP 6
% show gaze-dependent display
while 1 % loop till error or space bar is pressed

% Check recording status, stop display if error
error=EYELINK('checkrecording');

 if (error~=0)
break ;

end
% check for keyboard press
[keyIsDown,secs,keyCode] = KbCheck;
% if spacebar was pressed stop display
if keyCode(stopkey)

break ;
end
% check for presence of a new sample update
if EYELINK('newfloatsampleavailable') > 0

% get the sample in the form of an event structure
evt = EYELINK('newestfloatsample');
if eye_used ~= -1 % do we know which eye to use yet?

% if we do, get current gaze position from sample
x = evt.gx(eye_used+1); % +1 as we're accessing MATLAB array

 y = evt.gy(eye_used+1);
% do we have valid data and is the pupil visible?

 if x~=el.MISSING_DATA & y~=el.MISSING_DATA & evt.pa(eye_used+1)>0
 % if data is valid, draw a circle on the screen at current gaze position

% using PsychToolbox's SCREEN function
gazeRect=[x-7 y-7 x+8 y+8];

 SCREEN(window, 'FrameOval' , white,gazeRect,6,6);
 else

% if data is invalid (e.g. during a blink), clear display
SCREEN(window, 'FillRect' ,black);

end
else % if we don't, first find eye that's being tracked

 eye_used = EYELINK('eyeavailable'); % get eye that's tracked
if eye_used == el.BINOCULAR; % if both eyes are tracked

eye_used = e l.LEFT_EYE; % use left eye
end

end
end % if sample available

end % main loop
% wait a while to record a few more samples
waitsecs(0.1);

% STEP 7
% finish up: stop recording eye-movements,
% close graphics window, close data file and shut down tracker
EYELINK('stoprecording');
SCREEN(window, 'close');
EYELINK('closefile');
EYELINK('shutdown');

