Optimization and the Psychology of Human Decision Making

C. Barth, J. Funke
Experimental and Theoretical Psychology

H. Diedam, M. Engelhart, S. Sager
Interdisciplinary Center for Scientific Computing

HPSC 2009
Hanoi
Outline

Introduction

Mathematical formulation

Reformulations

Using Optimization as an Analysis Tool

Algorithm

Conclusions and Outlook
Goals of psychologists

- Research complex problem solving of human beings
 - Want to understand how external factors influence thinking
 - Example: positive or negative feedback
 - Example: stress
 - Example: learning effects
 - Approach: use computer-based test scenarios
 - Evaluate performance and correlate it to attributes
 - Example: proband’s capacity of emotion regulation
Goals of psychologists

- Research complex problem solving of human beings
- Want to understand how external factors influence thinking
 - Example: positive or negative feedback
 - Example: stress
 - Example: learning effects
Goals of psychologists

- Research complex problem solving of human beings
- Want to understand how external factors influence thinking
 - Example: positive or negative feedback
 - Example: stress
 - Example: learning effects
- Approach: use computer-based test scenarios
 - Evaluate performance and correlate it to attributes
 - Example: proband’s capacity of emotion regulation
Complex problem solving

- High-order cognitive process
- Complexity stems from:
 - coupling, nonlinearities, dynamics, intransparency, ...
- Psychologists work since ≈ 100 years on understanding
Complex problem solving

- High-order cognitive process
- Complexity stems from:
 coupling, nonlinearities, dynamics, intransparency, …
- Psychologists work since ≈ 100 years on understanding
- [Ewert&Lambert, 1932]: disk problem
Complex problem solving

- High-order cognitive process
- Complexity stems from:
 coupling, nonlinearities, dynamics, intransparency, . . .
- Psychologists work since ≈ 100 years on understanding
- [Ewert&Lambert, 1932]: disk problem
Complex problem solving

- High-order cognitive process
- Complexity stems from: coupling, nonlinearities, dynamics, intransparency, ...
- Psychologists work since \(\approx 100 \) years on understanding
 - [Ewert & Lambert, 1932]: disk problem

- Since 70s/80s: also use computer simulations
Measure capacity to solve complex problems

- Measure proband’s performance
 - Performance in a round based test scenario
 - Tailorshop developed in the 80s by Dörner
 - Referenced in many studies and books by now
 - Collect data from probands:
 - Quantified emotions: own statements
 - Standardized tests to classify probands according to groups, e.g., good or poor emotional regulation
 - Quantified emotions: observation of study leader
 - Quantified emotions: video analysis
Measure capacity to solve complex problems

- Measure proband’s performance
 - Performance in a round based test scenario
 - Tailorshop developed in the 80s by Dörner
 - Referenced in many studies and books by now

- Collect data from probands:
 - Quantified emotions: own statements
 - Standardized tests to classify probands according to groups, e.g., good or poor emotional regulation
 - Quantified emotions: observation of study leader
 - Quantified emotions: video analysis
The tailorshop

- Round based decision making
- How to produce, distribute, and sell shirts

Manufacturing → Logistics → Sales

- Goal: maximize profit after 12 months
Hier der Zustand Ihres Ladens am Ende von Monat 0

<table>
<thead>
<tr>
<th>Flüssigkapital</th>
<th>165775</th>
<th>Gesamtkapital (Bilanz)</th>
<th>250691</th>
</tr>
</thead>
<tbody>
<tr>
<td>verkaufte Hemden</td>
<td>407</td>
<td>Nachfrage (aktuell)</td>
<td>767</td>
</tr>
<tr>
<td>Rohmaterial: Preis</td>
<td>4</td>
<td>Rohmaterial: im Lager</td>
<td>16</td>
</tr>
<tr>
<td>fertige Hemden im Lager</td>
<td>81</td>
<td>50-Hemden-Maschinen</td>
<td>10</td>
</tr>
<tr>
<td>Arbeiter für 50er</td>
<td>8</td>
<td>100-Hemden-Maschinen</td>
<td>0</td>
</tr>
<tr>
<td>Arbeiter für 100er</td>
<td>0</td>
<td>Reparatur & Service</td>
<td>1200</td>
</tr>
<tr>
<td>Lohn pro Arbeiter</td>
<td>1080</td>
<td>Sozialkosten pro Arbeiter</td>
<td>50</td>
</tr>
<tr>
<td>Preis pro Hemd</td>
<td>52</td>
<td>Ausgaben für Werbung</td>
<td>2800</td>
</tr>
<tr>
<td>Anzahl der Lieferwagen</td>
<td>1</td>
<td>Geschäftslage</td>
<td>Cityrand</td>
</tr>
<tr>
<td>Arbeitszufriedenheit in %</td>
<td>57.7</td>
<td>Maschinen-Schäden in %</td>
<td>5.9</td>
</tr>
<tr>
<td>Produktionsausfall in %</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maßnahmen für Monat 1

- R = Rohmaterial einkaufen
- W = Kosten für Werbung ändern
- M = Maschinen (ver)kaufen, tauschen
- L = Lohn pro Arbeiter ändern
- G = Geschäftslage wechseln
- H = Hemdenpreis ändern
- A = Arbeiter einstellen oder entlassen
- I = Instandhaltung, Reparatur/Service
- S = Sozialkosten pro Arbeiter ändern
- T = Lieferwagen kaufen oder verkaufen
- D = Informationen aus der Datenbank
- E = Ende der Eingriffe für diesen Monat
So what is missing?

► Main motivation for simple test scenarios
 ► Optimal solution is known
 ► Proband’s performance is easy to analyze

► More complex scenarios
 ► Optimal solution is NOT known
 ► Performance only comparable among probands
 or isolated indices, e.g., advance in overall capital
 ► Hard to say when and what the wrong decisions were

► Is it possible to have a detailed (and correct) analysis?
 ► Yes. Need to formulate optimization problem!
So what is missing?

- **Main motivation for simple test scenarios**
 - Optimal solution is known
 - Proband’s performance is easy to analyze

- **More complex scenarios**
 - Optimal solution is NOT known
 - Performance only comparable among probands
 - or isolated indices, e.g., advance in overall capital
 - Hard to say *when* and *what* the wrong decisions were

- Is it possible to have a detailed (and correct) analysis?
 - Yes. Need to formulate optimization problem!
So what is missing?

- Main motivation for simple test scenarios
 - Optimal solution is known
 - Proband’s performance is easy to analyze

- More complex scenarios
 - Optimal solution is NOT known
 - Performance only comparable among probands
 - or isolated indices, e.g., advance in overall capital
 - Hard to say *when* and *what* the wrong decisions were

- Is it possible to have a detailed (and correct) analysis?
 - Yes. Need to formulate optimization problem!
Modeling - what was available?

▶ Heuristic descriptions
▶ GWBasic source code
GUI used for tests
GUI used for tests
GUI used for tests
Available GW Basic source code – extract

2650 ZA=.5+((LO-850)/550)+SM/800:IF ZA>ZM THEN:ZA=ZM
2660 SK=SM*(N1+N2):KA=KA-SK
2670 X=A1:IF N1<X THEN:X=N1
2680 Y=A2:IF N2<Y THEN:Y=N2
2690 PM=X*(MA+RND*4-2)+Y*(MA*2+RND*6-3):PM=PM*ABS(ZA)^.5
2700 X=PM:IF RL<X THEN:X=RL
2710 PA=X:HL=HL+PA:RL=RL-PA:KA=KA-(PA*1)-(RL*.5)
2720 NA=(NA/2+280)*1.25*2.7181^(-(PH^2)/4250):KA=KA-HL
2730 X=NA:IF HL<X THEN:X=HL
2740 VH=X:HL=HL-VH:KA=KA+VH*PH
2750 KA=KA-WE
2760 X1=WE/5:IF X1>NM THEN:X1=NM
2770 KA=KA-LW*500:X1=X1+LW*100
2780 KA=KA-GL*2000
2790 X=0:IF GL=.5 THEN:X=.1:ELSE IF GL=1 THEN:X=.2
2800 X1=X1+X1*X
2810 NA=X1+(RND*100-50)
2820 RP=2+(RND*6.5)
2830 MA=MA-.1*MA+(RS/(A1+A2*1E-08))*0.017
2840 IF MA>MM THEN:MA=MM
2850 KA=KA-RS
Observations

- **Nonlinear**

 2720 \(NA = \frac{NA}{2} + 280 \times 1.25 \times 2.7181^{-\left(\frac{PH^2}{4250}\right)} \)
Observations

- **Nonlinear**

 \[NA = \left(\frac{NA}{2} + 280\right) \times 1.25 \times 2.7181^{\left(\frac{-PH^2}{4250}\right)} \]

- **Integer variables**

 \[X = 0: \text{IF} \ GL = .5 \ \text{THEN}: X = .1: \text{ELSE} \text{IF} \ GL = 1 \ \text{THEN}: X = .2 \]
Observations

▶ Nonlinear

2720 \[NA = \frac{(NA/2 + 280) \times 1.25 \times 2.7181^{-(PH^2)/4250}}{2} \]

▶ Integer variables

2790 \[X = 0: \text{IF } GL = 0.5 \text{ THEN: } X = 0.1: \text{ELSE IF } GL = 1 \text{ THEN: } X = 0.2 \]

▶ Random values \(\xi \)

2810 \[NA = X + (RND \times 100 - 50) \]
Observations

- **Nonlinear**

 \[NA = \frac{NA}{2} + 280 \times 1.25 \times 2.7181^{\left(\frac{-(PH^2)}{4250}\right)} \]

- **Integer variables**

 \[X = 0: \text{IF } GL = 0.5 \text{ THEN: } X = 0.1: \text{ELSE IF } GL = 1 \text{ THEN: } X = 0.2 \]

- **Random values** \(\xi\)

 \[NA = X_1 + (RND \times 100 - 50) \]

- **Nondifferentiable**

 \[ZA = \frac{.5 + ((LO - 850)/550) + SM/800}{1}: \text{IF ZA} > ZM \text{ THEN: } ZA = ZM \]
Observations

- **Nonlinear**

 \[NA = (NA/2+280) \times 1.25 \times 2.7181^{\left(-\left(\text{PH}^2\right)/4250\right)} \]

- **Integer variables**

 \[X = 0 \quad \text{IF} \quad GL = .5 \quad \text{THEN} \quad X = .1 \quad \text{ELSE} \quad \text{IF} \quad GL = 1 \quad \text{THEN} \quad X = .2 \]

- **Random values \(\xi \)**

 \[NA = X1 + (RND \times 100 - 50) \]

- **Nondifferentiable**

 \[ZA = .5 + \left(\frac{LO-850}{550}\right) + SM/800 \quad \text{IF} \quad ZA > ZM \quad \text{THEN} \quad ZA = ZM \]

- **Sometimes variable time \(k \), sometimes already updated**

 \[PM = X \times (MA + RND \times 4 - 2) + Y \times (MA \times 2 + RND \times 6 - 3) \quad \text{PM} = PM \times (ABS(ZA)^{.5}) \]

 \[X = PM \quad \text{IF} \quad RL < X \quad \text{THEN} \quad X = RL \]

 \[PA = X \quad \text{HL} = HL + PA \quad \text{RL} = RL - PA \quad \text{KA} = KA - (PA \times 1) - (RL \times .5) \]
Abstract optimization model

- Dynamic model with discrete time $k = 0 \ldots N$
Abstract optimization model

- Dynamic model with discrete time $k = 0 \ldots N$
- Decisions $u_k = u(k)$ and states $x_k = x(k)$
Abstract optimization model

- Dynamic model with discrete time $k = 0 \ldots N$
- Decisions $u_k = u(k)$ and states $x_k = x(k)$
- Given initial values x_0 and parameters p
Abstract optimization model

- Dynamic model with discrete time $k = 0 \ldots N$
- Decisions $u_k = u(k)$ and states $x_k = x(k)$
- Given initial values x_0 and parameters p
- Random values ξ
Abstract optimization model

- Dynamic model with discrete time $k = 0 \ldots N$
- Decisions $u_k = u(k)$ and states $x_k = x(k)$
- Given initial values x_0 and parameters p
- Random values ξ
- Goal: find decisions u_k
 to maximize objective function of x_N
Abstract optimization model

- Dynamic model with discrete time $k = 0 \ldots N$
- Decisions $u_k = u(k)$ and states $x_k = x(k)$
- Given initial values x_0 and parameters p
- Random values ξ
- Goal: find decisions u_k
 to maximize objective function of x_N
Abstract optimization model

- Dynamic model with discrete time $k = 0 \ldots N$
- Decisions $u_k = u(k)$ and states $x_k = x(k)$
- Given initial values x_0 and parameters p
- Random values ξ
- Goal: find decisions u_k
 to maximize objective function of x_N

$$\max_{x,u} \quad F(x_N)$$

$$\begin{align*}
\text{s.t.} \quad & x_{k+1} = G(x_k, x_{k+1}, u_k, p, \xi), \quad k = 0 \ldots N - 1, \\
& 0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& u_k \in \Omega, \quad k = 0 \ldots N - 1.
\end{align*}$$
Control functions u_k

<table>
<thead>
<tr>
<th>Decision</th>
<th>$low \leq u_k \leq up$</th>
</tr>
</thead>
<tbody>
<tr>
<td>advertisement</td>
<td>$0 \leq WE \leq \infty$</td>
</tr>
<tr>
<td>shirt price</td>
<td>$10 \leq PH \leq 100$</td>
</tr>
<tr>
<td>buy raw material</td>
<td>$0 \leq \Delta RL \leq \infty$</td>
</tr>
<tr>
<td>workers 50</td>
<td>$-A_1 \leq \Delta A_1 \leq \infty$</td>
</tr>
<tr>
<td>workers 100</td>
<td>$-A_2 \leq \Delta A_2 \leq \infty$</td>
</tr>
<tr>
<td>buy machines 50</td>
<td>$0 \leq \Delta M_1 \leq \infty$</td>
</tr>
<tr>
<td>buy machines 100</td>
<td>$0 \leq \Delta M_2 \leq \max(0, MA - 35) \cdot \infty$</td>
</tr>
<tr>
<td>sell machines 50</td>
<td>$0 \leq \delta M_1 \leq M_1$</td>
</tr>
<tr>
<td>sell machines 100</td>
<td>$0 \leq \delta M_2 \leq M_2$</td>
</tr>
<tr>
<td>maintenance</td>
<td>$0 \leq RS \leq \infty$</td>
</tr>
<tr>
<td>wages</td>
<td>$850 \leq LO \leq \infty$</td>
</tr>
<tr>
<td>social spenses</td>
<td>$0 \leq SM \leq \infty$</td>
</tr>
<tr>
<td>buy vans</td>
<td>$0 \leq \Delta LW \leq \infty$</td>
</tr>
<tr>
<td>sell vans</td>
<td>$0 \leq \delta LW \leq LW$</td>
</tr>
<tr>
<td>Choose site</td>
<td>$GL \in {c, r, v}$</td>
</tr>
</tbody>
</table>
State variables x_{k+1} and x_k

<table>
<thead>
<tr>
<th>State</th>
<th>x_{k+1}</th>
<th>$G(x_k, x_{k+1}, u_k, p, \xi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>machines 50</td>
<td>M_1</td>
<td>$M_1 + \Delta M_1 - \delta M_1$</td>
</tr>
<tr>
<td>machines 100</td>
<td>M_2</td>
<td>$M_2 + \Delta M_2 - \delta M_2$</td>
</tr>
<tr>
<td>workers 50</td>
<td>A_1</td>
<td>$A_1 + \Delta A_1$</td>
</tr>
<tr>
<td>workers 100</td>
<td>A_2</td>
<td>$A_2 + \Delta A_2$</td>
</tr>
<tr>
<td>demand</td>
<td>NA</td>
<td>$100\xi - 50$</td>
</tr>
<tr>
<td>vans</td>
<td>LW</td>
<td>$LW + \Delta LW - \delta LW$</td>
</tr>
<tr>
<td>shirts sales</td>
<td>VH</td>
<td>$\min(HL, \frac{5}{4} \left(\frac{NA}{2} + 280\right) \cdot 2.7181 - \frac{PH^2}{4250})$</td>
</tr>
<tr>
<td>shirts stock</td>
<td>HL</td>
<td>$HL + PA - VH$</td>
</tr>
<tr>
<td>possible production</td>
<td>PM</td>
<td>$(\min(A_1, M_1)(MA + 4\xi - 2) + \min(A_2, M_2)(2MA + 6\xi - 3)) \cdot</td>
</tr>
<tr>
<td>actual production</td>
<td>PA</td>
<td>$\min(PM, RL + \Delta RL)$</td>
</tr>
<tr>
<td>material price</td>
<td>RP</td>
<td>$2 + 6.5\xi$</td>
</tr>
<tr>
<td>material stock</td>
<td>RL</td>
<td>$RL + \Delta RL - PA$</td>
</tr>
<tr>
<td>satisfaction</td>
<td>ZA</td>
<td>$\min\left(ZM, \frac{1}{2} + \frac{LO-850}{550} + \frac{SM}{800}\right)$</td>
</tr>
<tr>
<td>machine capacity</td>
<td>MA</td>
<td>$\min\left(MM, 0.9MA + 0.017 \frac{RS}{M_1 + 10^{-8}M_2}\right)$</td>
</tr>
</tbody>
</table>
State variables: money

\[
UK = KA + VH \cdot PH - RP \cdot \Delta RL \\
-10000\Delta M_1 + 8000 \frac{MA}{MM} \delta M_1 - 20000\Delta M_2 + 16000 \frac{MA}{MM} \delta M_2 \\
-SK - WE - RS - (A_1 + A_2) \cdot LO \\
-PA - \frac{1}{2} RL - (HL + PA) \\
-10000 \cdot \Delta LW + (8000 - 100k) \cdot \delta LW - 500 LW \\
\begin{cases}
2000 & \text{if } GL = c \\
1000 & \text{if } GL = r \\
500 & \text{if } GL = v
\end{cases}
\]

\[
KA = UK \left(1 + \begin{cases}
GZ & \text{if } UK \geq 0 \\
SZ & \text{if } UK < 0
\end{cases}\right)
\]

Goal: maximize \(L_N \):

\[
L = KA + \frac{MA}{MM} (8000M_1 + 16000M_2) \\
+(8000 - 100k) \cdot LW + 2RL + 20HL
\]
Fixed initial values x_0 and parameters p

<table>
<thead>
<tr>
<th>State</th>
<th>x_k</th>
<th>$x_0 =$</th>
</tr>
</thead>
<tbody>
<tr>
<td>machines 50</td>
<td>M_1</td>
<td>10</td>
</tr>
<tr>
<td>machines 100</td>
<td>M_2</td>
<td>0</td>
</tr>
<tr>
<td>workers 50</td>
<td>A_1</td>
<td>8</td>
</tr>
<tr>
<td>workers 100</td>
<td>A_2</td>
<td>0</td>
</tr>
<tr>
<td>demand</td>
<td>NA</td>
<td>766.636</td>
</tr>
<tr>
<td>material price</td>
<td>RP</td>
<td>3.9936</td>
</tr>
<tr>
<td>material stock</td>
<td>RL</td>
<td>16.06787</td>
</tr>
<tr>
<td>shirts stock</td>
<td>HL</td>
<td>80.7164</td>
</tr>
<tr>
<td>machine capacity</td>
<td>MA</td>
<td>47.04</td>
</tr>
<tr>
<td>cash</td>
<td>KA</td>
<td>165774.66</td>
</tr>
<tr>
<td>vans</td>
<td>LW</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>p</th>
<th>$p =$</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum demand</td>
<td>NM</td>
<td>900</td>
</tr>
<tr>
<td>interest rate</td>
<td>GZ</td>
<td>0.0025</td>
</tr>
<tr>
<td>debt rate</td>
<td>SZ</td>
<td>0.0066</td>
</tr>
<tr>
<td>maximum machine capacity</td>
<td>MM</td>
<td>50</td>
</tr>
<tr>
<td>maximum satisfaction</td>
<td>ZM</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Modeling issues

\[
\max_{x,u} \ F(x_N)
\]

s.t. \[x_{k+1} = G(x_k, x_{k+1}, u_k, p, \xi), \quad k = 0 \ldots N - 1,\]
\[0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1,\]
\[u_k \in \Omega, \quad k = 0 \ldots N - 1.\]

▶ More realistic modeling (delays, memory effects, ...)
Modeling issues

\[
\begin{align*}
\max_{x,u} & \quad F(x_N) \\
\text{s.t.} & \quad x_{k+1} = G(x_k, x_{k+1}, u_k, p, \xi), \quad k = 0 \ldots N - 1, \\
& \quad 0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad u_k \in \Omega, \quad k = 0 \ldots N - 1.
\end{align*}
\]

- More realistic modeling (delays, memory effects, …)
- Modeling errors
Modeling issues

\[
\begin{align*}
\max_{x,u} & \quad F(x_N) \\
\text{s.t.} & \quad x_{k+1} = G(x_k, x_{k+1}, u_k, p, \xi), \quad k = 0 \ldots N - 1, \\
& \quad 0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad u_k \in \Omega, \quad k = 0 \ldots N - 1.
\end{align*}
\]

- More realistic modeling (delays, memory effects, \ldots)
- Modeling errors
- Random values ξ
Modeling issues

\[
\begin{align*}
\max_{x,u} & \quad F(x_N) \\
\text{s.t.} & \quad x_{k+1} = G(x_k, x_{k+1}, u_k, p, \xi), \quad k = 0 \ldots N - 1, \\
& \quad 0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad u_k \in \Omega, \quad k = 0 \ldots N - 1.
\end{align*}
\]

- More realistic modeling (delays, memory effects, \ldots)
- Modeling errors
- Random values ξ
- Bounds on variables
Modeling issues

\[
\max_{x,u} F(x_N)
\]
\[
\text{s.t.} \quad x_{k+1} = G(x_k, x_{k+1}, u_k, p, \xi), \quad k = 0 \ldots N - 1,
\]
\[
0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1,
\]
\[
u_k \in \Omega, \quad k = 0 \ldots N - 1.
\]

▶ More realistic modeling (delays, memory effects, \ldots)
▶ Modeling errors
▶ Random values \(\xi\)
▶ Bounds on variables
▶ Integer decisions
Modeling issues

\[
\begin{align*}
\max_{x,u} & \quad F(x_N) \\
\text{s.t.} & \quad x_{k+1} = G(x_k, x_{k+1}, u_k, p, \xi), \quad k = 0 \ldots N - 1, \\
& \quad 0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad u_k \in \Omega, \quad k = 0 \ldots N - 1.
\end{align*}
\]

- More realistic modeling (delays, memory effects, \ldots)
- Modeling errors
- Random values ξ
- Bounds on variables
- Integer decisions
- $F(\cdot)$, $G(\cdot)$ and $H(\cdot)$ continuously differentiable? Expressions including if, min, or max are not!
Consistency

- More realistic model only with new study
Consistency

- More realistic model only with new study
- Modelling errors: have to accept and include them

\[MA = \min \left(MM, 0.9MA + 0.017 \frac{RS}{M_1 + 10^{-8} M_2} \right) \]

\[\rightarrow RS = \epsilon \] optimal
Consistency

- More realistic model only with new study
- Modelling errors: have to accept and include them

\[MA = \min \left(MM, 0.9 MA + 0.017 \frac{RS}{M_1 + 10^{-8} M_2} \right) \]

\[\rightarrow RS = \epsilon \text{ optimal} \]

- Random values \(\xi \)

140 X=RND (-1)

\[\ldots \]

2810 NA=X1+(RND*100-50)

Random values \(\xi \) can be treated as parameters \(p \)!
Integer decisions

<table>
<thead>
<tr>
<th>Decision</th>
<th>(\text{low} \leq u_k \leq \text{up})</th>
</tr>
</thead>
<tbody>
<tr>
<td>advertisement</td>
<td>(0 \leq WE \leq \infty)</td>
</tr>
<tr>
<td>shirt price</td>
<td>(10 \leq PH \leq 100)</td>
</tr>
<tr>
<td>buy raw material</td>
<td>(0 \leq \Delta RL \leq \infty)</td>
</tr>
<tr>
<td>workers 50</td>
<td>(-A_1 \leq \Delta A_1 \leq \infty)</td>
</tr>
<tr>
<td>workers 100</td>
<td>(-A_2 \leq \Delta A_2 \leq \infty)</td>
</tr>
<tr>
<td>buy machines 50</td>
<td>(0 \leq \Delta M_1 \leq \infty)</td>
</tr>
<tr>
<td>buy machines 100</td>
<td>(0 \leq \Delta M_2 \leq \max(0, MA - 35) \cdot \infty)</td>
</tr>
<tr>
<td>sell machines 50</td>
<td>(0 \leq \delta M_1 \leq M_1)</td>
</tr>
<tr>
<td>sell machines 100</td>
<td>(0 \leq \delta M_2 \leq M_2)</td>
</tr>
<tr>
<td>maintenance</td>
<td>(0 \leq RS \leq \infty)</td>
</tr>
<tr>
<td>wages</td>
<td>(850 \leq LO \leq \infty)</td>
</tr>
<tr>
<td>social spenses</td>
<td>(0 \leq SM \leq \infty)</td>
</tr>
<tr>
<td>buy vans</td>
<td>(0 \leq \Delta LW \leq \infty)</td>
</tr>
<tr>
<td>sell vans</td>
<td>(0 \leq \delta LW \leq LW)</td>
</tr>
<tr>
<td>Choose site</td>
<td>(GL \in {c, r, v})</td>
</tr>
</tbody>
</table>
Bounds

- Optimizer’s intuition: no bounds on variables
 → unbounded solution
Bounds

- Optimizer’s intuition: no bounds on variables → unbounded solution
- Combination of model error and no bound. Demand

\[
NA = a + \left(\min\left(\frac{WE}{5}, NM \right) + 100LW \right) \cdot b
\]

enters into number of shirts sold

\[
VH = \min(HL, \frac{5}{4} \left(\frac{NA}{2} + 280 \right) \cdot 2.7181 - \frac{PH^2}{4250})
\]
Bounds

- Optimizer’s intuition: no bounds on variables
 \implies unbounded solution
- Combination of model error and no bound. Demand
 $$NA = a + \left(\min\left(\frac{WE}{5}, NM \right) + 100LW \right) \cdot b$$

 enters into number of shirts sold

 $$VH = \min(HL, \frac{5}{4} \left(\frac{NA}{2} + 280 \right) \cdot 2.7181^{-\frac{PH^2}{4250}})$$

- Need to include bounds – consistency!
Nondifferentiabilities

\[\min (ZM, \frac{1}{2} + \frac{LO-850}{550} + \frac{SM}{800}) \]
Nondifferentiabilities

\[\min (ZM, \frac{1}{2} + \frac{LO - 850}{550} + \frac{SM}{800}) \rightarrow \frac{1}{2} + \frac{LO - 850}{550} + \frac{SM}{800} \leq ZM \]
Nondifferentiabilities

- \(\min \left(ZM, \frac{1}{2} + \frac{LO-850}{550} + \frac{SM}{800} \right) \rightarrow \frac{1}{2} + \frac{LO-850}{550} + \frac{SM}{800} \leq ZM \)
- \(\min(PM, RL + \Delta RL) \rightarrow RL + \Delta RL \leq PM \)
- \(\min(HL, \frac{5}{4} \left(\frac{NA}{2} + 280 \right) \cdot 2.7181^{\frac{PH^2}{4250}}) \)
 \(\rightarrow \frac{5}{4} \left(\frac{NA}{2} + 280 \right) \cdot 2.7181^{\frac{PH^2}{4250}} \leq HL \)
- \(\min\left(\frac{WE}{5}, NM \right) \rightarrow \frac{WE}{5} \leq NM \)
- \(\min\left(MM, 0.9MA + 0.017 \frac{RS}{M_1+10^{-8}M_2} \right) \rightarrow \\
 0.9MA + 0.017 \frac{RS}{M_1+10^{-8}M_2} \leq MM \)
- \(\min(A_1, M_1), \min(A_2, M_2) \rightarrow A_1 \leq M_1, A_2 \leq M_2 \)
- Buy machines (100) only if \(MA > 35 \):
 \(\rightarrow 0 \leq \Delta M_2 \leq \max(0, MA - 35) \cdot \infty \)
 \(\rightarrow MA \geq 36 \)
- \(KA = UK \left(1 + \begin{cases}
 GZ & \text{if } UK \geq 0 \\
 SZ & \text{if } UK < 0
 \end{cases} \right) \)?
Optimization problem

\[
\begin{align*}
\max_{x,u} & \quad F(x_N) \\
\text{s.t.} & \quad x_{k+1} = G(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad 0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad u_k \in \Omega, \quad k = 0 \ldots N - 1.
\end{align*}
\]

- 5 continuous control functions
Optimization problem

\[
\max_{x,u} F(x_N) \\
\text{s.t.} \quad x_{k+1} = G(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
u_k \in \Omega, \quad k = 0 \ldots N - 1.
\]

- 5 continuous control functions
- 10 integer control functions
Optimization problem

\[
\begin{align*}
\max_{x,u} & \quad F(x_N) \\
\text{s.t.} & \quad x_{k+1} = G(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad 0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad u_k \in \Omega, \quad k = 0 \ldots N - 1.
\end{align*}
\]

- 5 continuous control functions
- 10 integer control functions
- 17 state functions
Optimization problem

\[
\begin{align*}
\max_{x,u} & \quad F(x_N) \\
\text{s.t.} & \quad x_{k+1} = G(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad 0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad u_k \in \Omega, \quad k = 0 \ldots N - 1.
\end{align*}
\]

- 5 continuous control functions
- 10 integer control functions
- 17 state functions
- No uncertainty
Optimization problem

\[
\begin{align*}
\max_{x,u} & \quad F(x_N) \\
\text{s.t.} & \quad x_{k+1} = G(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad 0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad u_k \in \Omega, \quad k = 0 \ldots N - 1.
\end{align*}
\]

- 5 continuous control functions
- 10 integer control functions
- 17 state functions
- No uncertainty
- Differentiable
Optimization problem

\[
\begin{align*}
\max_{x,u} & \quad F(x_N) \\
\text{s.t.} & \quad x_{k+1} = G(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad 0 \leq H(x_k, x_{k+1}, u_k, p), \quad k = 0 \ldots N - 1, \\
& \quad u_k \in \Omega, \quad k = 0 \ldots N - 1.
\end{align*}
\]

- 5 continuous control functions
- 10 integer control functions
- 17 state functions
- No uncertainty
- Differentiable
- Mixed-integer Nonlinear Program (MINLP)
Intermediate summary

- Go from simple test scenarios to complex scenarios
- Determine month(s) k with **bad** decisions
- Do not use progress in objective as currently done!
- Compare optimal solutions at time k and $k + 1$ as measure
- Optimal solutions = solutions of MINLPs
Analysis

- For every data set
 - For every month from 0 to 11
 - Calculate optimal solution for rest of time
 - Store objective value at end time
Analysis

- For every data set
 - For every month from 0 to 11
 - Calculate optimal solution for rest of time
 - Store objective value at end time
Analysis

- For every data set
 - For every month from 0 to 11
 - Calculate optimal solution for rest of time
 - Store objective value at end time
Analysis

- For every data set
 - For every month from 0 to 11
 - Calculate optimal solution for rest of time
 - Store objective value at end time
Analysis

- For every data set
 - For every month from 0 to 11
 - Calculate optimal solution for rest of time
 - Store objective value at end time
Analysis

- For every data set
 - For every month from 0 to 11
 - Calculate optimal solution for rest of time
 - Store objective value at end time
Analysis

- For every data set
 - For every month from 0 to 11
 - Calculate optimal solution for rest of time
 - Store objective value at end time
Analysis

- For every data set
 - For every month from 0 to 11
 - Calculate optimal solution for rest of time
 - Store objective value at end time
Analysis

- For every data set
 - For every month from 0 to 11
 - Calculate optimal solution for rest of time
 - Store objective value at end time
Analysis

- For every data set
 - For every month from 0 to 11
 - Calculate optimal solution for rest of time
 - Store objective value at end time
Analysis

- For every data set
 - For every month from 0 to 11
 - Calculate optimal solution for rest of time
 - Store objective value at end time

![Graph showing the objective function over time](image-url)
Analysis

- For every data set
 - For every month from 0 to 11
 - Calculate optimal solution for rest of time
 - Store objective value at end time
Analysis

▶ For every data set
 ▶ For every month from 0 to 11
 ▶ Calculate optimal solution for rest of time
 ▶ Store objective value at end time
Objective of proband vs. potential (in black)
Objective of proband vs. potential (in black)

Analysis function 3

(x\times10^5)

Objective vs. how much is still possible

Month
Objective of proband vs. potential (in black)
Objective of proband vs. potential (in black)
Objective of proband vs. potential (in black)

Analysis function 3

Objective vs. how much is still possible

(x10^5)

Month
Objective of proband vs. potential (in black)
Objective of proband vs. potential (in black)
Objective of proband vs. potential (in black)

Analysis function 3

Objective vs. how much is still possible

Month

(x10^5)
Objective of proband vs. potential (in black)

Analysis function 3

Objective vs. how much is still possible

Month

(x10^5)
Objective of proband vs. potential (in black)

(x10^5)
Objective of proband vs. potential (in black)

(x10^5)

Analysis function 3

Objective vs. how much is still possible

Month
Objective of proband vs. potential (in black)
Further analysis

- Determine WHICH decision was really bad
- Can evaluate the derivative
- No need: already know the optimal solution
 - Look at \((u^*, x^*) - (u^P, x^P)\)
Further analysis

- Determine WHICH decision was really bad
- Can evaluate the derivative
- No need: already know the optimal solution
 - Look at \((u^*, x^*) - (u^p, x^p)\)

Better:
- Solve problem from \(k + 1\) to \(N\) as before
- Add constraints \(u_{k,i} = u_{k,i}^p\), calculate Lagrange multipliers
- Shadow prices: how much does decision \(i\) at time \(k\) cost?
Solver

- Modeling done with AMPL
- Automatization of interfaces
Solver

- Modeling done with AMPL
- Automatization of interfaces
- Structure exploiting interior point method
- IPOPT (Wächter et al.)
- Bonmin (Bonami et al.)

Needed to solve $80 \cdot 12$ optimization problems

- Runtimes each on notebook
 - relaxed: < 1 sec.
 - integer: ≈ 3 min.

Without hotstarts or advanced numerical techniques

No multiple local minima found so far
Solver

- Modeling done with AMPL
- Automatization of interfaces
- Structure exploiting interior point method
- IPOPT (Wächter et al.)
- Bonmin (Bonami et al.)

- Needed to solve $80 \cdot 12$ optimization problems
- Runtimes each on notebook
 - relaxed: < 1 sec.
 - integer: ≈ 3 min.

Without hotstarts or advanced numerical techniques
No multiple local minima found so far
Solver

- Modeling done with AMPL
- Automatization of interfaces
- Structure exploiting interior point method
- IPOPT (Wächter et al.)
- Bonmin (Bonami et al.)

- Needed to solve $80 \cdot 12$ optimization problems
- Runtimes each on notebook
 - relaxed: < 1 sec.
 - integer: ≈ 3 min.
- Without hotstarts or advanced numerical techniques
- No multiple local minima found so far
Conclusions

- Computer based micro worlds used to understand human complex problem solving
- Modelled one of the most famous ones (tailorshop) as an optimization problem
- By solving series of optimization problems get valuable additional information
- Important: good modelling, exploiting structure
Outlook

▶ Apply new analysis tool to interesting test sets
▶ Apply statistical tools
Outlook

- Apply new analysis tool to interesting test sets
- Apply statistical tools
- Improve numerics
 - Warmstarts
 - Initial value embedding
- Will allow for online feedback

From my point of view this is a sensational breakthrough in psychology. This new analysis tool will revolutionize the research field!
Outlook

- Apply new analysis tool to interesting test sets
- Apply statistical tools
- Improve numerics
 - Warmstarts
 - Initial value embedding
- Will allow for online feedback
- Combine analysis with investigation of human abstraction / simplification

Cite Joachim Funke: From my point of view this is a sensational breakthrough in psychology. This new analysis tool will revolutionize the research field!
Outlook

- Apply new analysis tool to interesting test sets
- Apply statistical tools
- Improve numerics
 - Warmstarts
 - Initial value embedding
- Will allow for online feedback
- Combine analysis with investigation of human abstraction / simplification

- Cite Joachim Funke: *From my point of view this is a sensational breakthrough in psychology. This new analysis tool will revolutionize the research field!*
Thank you very much for your attention!

Questions as complex problems for me?
Add constraint: capital ≥ 0
Add constraint: capital ≥ 0
Add constraint: capital \geq min capital of probands
Add constraint: \(\text{capital} \geq \text{min capital of probands} \)
Add constraint: capital $\geq -10^{10}$
Add constraint: capital \(\geq -10^{10} \)
Fix # of vans to proband’s choice
Fix # of vans to proband’s choice