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Abstract. We present a problem class of mixed-integer nonlinear programs (MINLPs) with nonconvex
continuous relaxations which stem from economic test scenarios that are used in the analysis of human complex
problem solving. In a round-based scenario participants hold an executive function. A posteriori a performance
indicator is calculated and correlated to personal measures such as intelligence, working memory, or emotion
regulation. Altogether, we investigate 2088 optimization problems that differ in size and initial conditions,
based on real-world experimental data from 12 rounds of 174 participants. The goals are twofold. First, from
the optimal solutions we gain additional insight into a complex system, which facilitates the analysis of a
participant’s performance in the test. Second, we propose a methodology to automatize this process by provid-
ing a new criterion based on the solution of a series of optimization problems. By providing a mathematical
optimization model and this methodology, we disprove the assumption that the “fruit fly of complex problem
solving,” the Tailorshop scenario that has been used for dozens of published studies, is not mathematically
accessible—although it turns out to be extremely challenging even for advanced state-of-the-art global opti-
mization algorithms and we were not able to solve all instances to global optimality in reasonable time in this
study. The publicly available computational tool Tobago [TOBAGO web site https://sourceforge.net/
projects/tobago] can be used to automatically generate problem instances of various complexity, contains in-
terfaces to AMPL and GAMS, and is hence ideally suited as a testbed for different kinds of algorithms and
solvers. Computational practice is reported with respect to the influence of integer variables, problem dimen-
sion, and local versus global optimization with different optimization codes.
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1. Introduction. The methodology optimization has a long record of successful
improvements in many technological and scientific areas, being used for tasks such
as design, scheduling, business control rules, process control, and the like. More recently,
optimization has also been successfully applied in the context of inverse problems, e.g.,
for the choice and calibration of mathematical models or as a modeling paradigm for
biological systems. In this work we propose to use numerical optimization as an analysis
tool for the understanding of human problem solving, which to our knowledge has not
yet received much attention.

Complex problem solving is defined as a high-order cognitive process. The complex-
ity may result from one or several different characteristics, such as a coupling of sub-
systems, nonlinearities, dynamic changes, intransparency, or others [16]. The main
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intention of the research field complex problem solving of human beings is the desire to
understand how certain variables influence a solution process. In general personal and
situational variables are differentiated. The most typical and frequently analyzed per-
sonal variable is intelligence. It is an ongoing debate how intelligence influences complex
problem solving [53]. Other interesting personal variables are working memory [43],
amount of knowledge [34], and emotion regulation [40]. Situational variables like the
impact of goal specificity and observation [39], feedback [12], and time constraints
[26] attracted less attention.

Psychologists have been working in the research fields of problem solving for ap-
proximately 80 years. One of the groundbreaking works by Ewert and Lambert in
1932 [17] was based on the disk problem, more commonly known as the Tower of Hanoi.
Since the 1970s and 1980s computer-based test scenarios have also been used, e.g.,
LEARN [28], Moro [46], FSYS 2.0 [51], and Tailorshop, which is the basis for this study.
Tailorshop is sometimes referred to as the “Drosophila” for problem solving researchers
[24] and thus a prominent example for a computer-based test scenario. All mentio-
ned scenarios try to reflect the characteristics of real-life problems by simulating a
microworld [27].

The overall idea, compared to early works in problem solving, is still the same: one
evaluates the performance of a participant by calculating an indicator function and
either correlates it to personal attributes, such as the intelligence quotient [32], or ana-
lyzes the influence of different experimental conditions for groups of participants [4]. The
main difference is that for the early test scenarios the correct solution is known at every
stage. For more complex scenarios the performance evaluation is not so straightforward.

In this paper we address the question of how to get a reliable performance indicator
for the Tailorshop scenario. Tailorshop has been used in a large number of studies, e.g.,
[42], [35], [33], [37], [4], [5]. Also comprehensive reviews on studies and results in con-
nection with Tailorshop have been published; see [20], [22], [23], [25], [24], in which more
information on the psychological background can be found.

In Tailorshop participants make economic decisions to maximize the overall balance
of a small company specialized in the production and sales of shirts. To measure per-
formance within the Tailorshop scenario, different indicator functions have been pro-
posed in the literature. To use a comparison of accumulated capital at the final
month 12 between all participants was proposed in [30]. This criterion seems natural,
as this is what the participants are requested to maximize. However, it cannot yield
insight into the temporal process and is not objective in the sense that the performance
depends on what other participants achieved. Analyzing the temporal evolution of state
variables has also been proposed. In [41], [47] the evolution of profit, equivalent to the
evolution of capital after interest xCAk , was proposed. In [21], [5] the evolution of the
overall worth of the tailorshop xOB

k was used. An obvious drawback of comparing
the results of several rounds with one another is that the main goal of the participant
is to maximize the value at the end of the test, not necessarily in between. Thinking
about the analogy of maximizing the amplitude of a pendulum with a hair dryer, in
certain scenarios “going back,” to gain momentum is obviously better than pushing
it all the time in the desired direction. The same is true for the Tailorshop scenario.
It may be better to invest in infrastructure at the beginning (which is actually decreasing
the overall capital as infrastructure loses value over time) to have a higher pay-off to-
ward the last rounds of the test. Hence it might happen that decisions are analyzed to be
bad while they are actually good ones, and vice versa. To overcome this problem, we
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propose to compare the decisions to mathematically optimal solutions. For a recent re-
view on Tailorshop success criteria, see [15].

Because all previously used indicators have unknown reliability and validity, we
propose to compare the decisions to mathematically optimal solutions. Hussy [31,
p. 62] writes in 19851

“Only when it will be possible, e.g., by means of mathematical optimization meth-
ods, to determine the objectively optimal solution process to compare the process chosen
by the proband with it, will this severe problem be overcome.”

The availability of an objective performance indicator is an obstacle for analysis,
and it has often been argued that inconsistent findings are due to the fact that

“ : : : it is impossible to derive valid indicators of problem solving performance for
tasks that are not formally tractable and thus do not possess a mathematically optimal
solution. Indeed, when different dependent measures are used in studies using the same
scenario (i.e., Tailorshop [21], [47], [41]), then the conclusions frequently differ”
as stated by Wenke and Frensch [52, p. 95]. Based on a mathematical model of the
Tailorshop, an optimization is performed for every round of the participant’s data, start-
ing with exactly the same conditions as the participant. By comparing these optimal
values that indicate how much is still possible if all future decisions were made perfectly,
an analysis of at what rounds potential has been lost by decisions can be obtained. Based
on optimization theory, even further insight into what decisions were decisive for bad or
good performance can be obtained by analyzing Lagrange multipliers.

To our knowledge, numerical optimization methods have only scarcely been used
for the analysis of participants’ decisions in complex environments like Tailorshop.
Cognitive psychologists and economists have been using simulation methods for finding
optimal solutions for simple tasks within strongly constrained environments. Also, in the
context of experimental economics studies have been performed, however, to our knowl-
edge not with explicit mathematical representations of the scenarios, including nonli-
nearities and integer variables. The general approach to compare performance to
optimal solutions has been discussed by [36]. However, the authors do not provide a
mathematical model for their test scenario EPEX. Hence, they need to use the software
as a black box for brute-force simulation or derivative free strategies, such as Nelder–
Mead [38], or genetic algorithms. Such strategies result in significantly higher computa-
tional runtimes, give less insight, and have poor theoretical convergence properties. Our
approach formulates the simulation task as equality constraints of the optimization pro-
blem and thus allows us to apply modern optimization techniques, including simulta-
neous strategies that solve simulation and optimization tasks at the same time. They
have shown to be superior in many cases; compare, e.g., [8], [7], [2].

It turns out that the optimization problems that need to be solved in the context of
the Tailorshop scenario are mixed-integer nonlinear programs with nonconvex contin-
uous relaxations. Whenever optimization problems involve variables of continuous and
discrete nature, the term mixed-integer is used. In our case they can be interpreted as
discretized optimal control problems. See [44] for a recent review of algorithms to treat
continuous-time mixed-integer optimal control problems. However, as the time grid is
fixed, the applicability of such methods is limited, and we focus on combinatorial
methods.

1Author’s translation from the German original: “Erst wenn es gelingt, z.B. durch mathematische
Optimierungsverfahren, den objektiv besten Lösungsweg zu bestimmen, um daran den tatsächlich gewählten
Lösungsweg der Pbn messen zu können, wird dieses ernste Problem [die objektive Bestimmung der
Problemlösegüte] aus dem Weg zu raümen sein.”
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Progress in mixed-integer linear programming (MILP) started with the fundamen-
tal work of Dantzig and coworkers on the Traveling Salesman problem in the 1950s.
Since then, enormous progress has been made in areas such as linear programming
(and especially in the dual simplex method that is the core of almost all MILP solvers
because of its restart capabilities), in the understanding of branching rules and more
powerful selection criteria such as strong branching, the derivation of tight cutting
planes, novel preprocessing and bound tightening procedures, and of course the compu-
tational advances roughly following Moore’s law. For specific problem classes problems
with millions of integer variables can now be routinely solved [3]. Also, generic problems
can often be solved very efficiently in practice, despite the known exponential complex-
ity from a theoretical point of view [9].

The situation is different in the field of mixed-integer nonlinear programming
(MINLP). Only at first sight many properties of MILP seem to carry over to the non-
linear case. Restarting nonlinear continuous relaxations within branching trees is essen-
tially more difficult than restarting linear relaxations (which, e.g., BARON and
Couenne also use for nonlinear problems), as no dual algorithm comparable to the dual
simplex is available in the general case. Nonconvexities lead to local minima and do not
allow for easy calculation of subtrees, which is important to avoid an explicit enumera-
tion. Additionally, nonlinear solvers are slower and less robust than LP solvers. How-
ever, the last decade saw great progress triggered by cross-disciplinary work of integer
and nonlinear optimizers, resulting in generic MINLP solvers, e.g., [1], [10]. Most of
them, however, still require the underlying functions to be convex. Comprehensive sur-
veys on algorithms and software for convex MINLPs are given in [29], [11]. Recent pro-
gress in the solution of nonconvex MINLPs is in most cases based on methods from
global optimization, in particular convex under- and overestimation. See, e.g., [18],
[48] for references on general under- and overestimation of functions and sets.

Our intention is to foster interdisciplinary research between psychologists and ap-
plied mathematicians. We provide the research community in the field of complex pro-
blem solving with the open source software tool Tobago [45]. This data generation and
analysis tool can be hooked to a variety of optimization solvers. Currently the software
supports AMPL [19] and GAMS [14] interfaces. This allows for the usage of solvers from
the COIN-OR initiative, which are also available under a public license. In this study we
used the global solvers Couenne [6] and the local solvers Bonmin [10] and Ipopt [50]. In
addition, we ran the global solver BARON [49] on the NEOS server.

It turns out, however, that the size and complexity of the problems presented in this
paper lead to extremely long runtimes of the global solvers and can only be used on a
small subset of the problems. We present a problem-specific lower bound to avoid bad
local maxima and guarantee monotonicity of the analysis function that builds on the
locally optimal objective function values. However, additional future work in several
mathematical areas will be needed to address all demands of researchers in complex pro-
blem solving.

The paper is organized as follows. In section 2 we explain the test scenario and derive
a mathematical model for the Tailorshop. In section 3 details concerning the software
implementation and solution of the series of optimization problems are given, together
with numerical results. The implications for a psychological study we performed are
mentioned in section 4. We give a summary and an outlook to future work in section 5.

2. Tailorshop MINLP model. The Tailorshop was developed and implemented
as a test scenario in the 1980s by Dörner [16]. It has been used in numerous studies, e.g.,
[42], [35], [33], [37], [4], [5]. Also, comprehensive reviews have been published (see [20],

OPTIMIZATION AS AN ANALYSIS TOOL 939

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



[22], [23], [25], [24]), in which more information on the psychological background can also
be found.

A participant has to take economic decisions to maximize the overall balance of a
small company specialized in the production and sales of shirts. The scenario comprises
12 rounds (months), in which the participant can modify infrastructure (employees, ma-
chines, distribution vans), financial settings (wages, maintenance, prices), and logistical
decisions (shop location, buying raw material). As feedback he gets some key indicators
in the next round, such as the current number of sold shirts, machines, employees, and
the like. Arrows next to the indicators show if the value increased or decreased with
respect to the previous round.

There are two different kinds of machines to produce either 50 or 100 shirts per
month. Workers need to specialize for work on either one of them. The machines need
to be maintained and equipped with raw material to actually produce something. The
possible production depends furthermore on the satisfaction of the workers, linked to the
controls wages and social expenses. Vans influence the demand in a positive way.
Furthermore, advertisement, location of the sales shop, and shirt pricing decisions
can be used to maximize profit.

We derive a mathematical formulation as an optimization problem. The basic idea is
that for different initial values (the current state in round ns of a participant’s test run)
the optimal solution for the remaining N − ns rounds can be calculated. The optimal
solution can then either be used for amanual comparison and analysis of the participant’s
decisions, section 3, or for an automated indicator function, as discussed in section 4.

The Tailorshop was developed as a computer-based test scenario in GW-Basic code
in the early 1980s. This implementation was the starting point for the mathematical
modeling process. Figure A.1 in the appendix shows a short extract of this file. The
scenario as it is implemented in GW-Basic has several shortcomings and assumptions
one might disagree with. However, this implementation and similar ones have been used
over years, and at the point where interdisciplinary cooperation started, most of the data
of the 174 participants had already been evaluated in a cumbersome procedure. Hence
the formulation of test scenarios that have better mathematical properties has been
postponed to future work, and the mathematical model which we derive from the
GW-Basic code can be considered as given, even if it is not in all aspects close to reality.

On the basis of the GW-Basic code we derived a mathematical optimization pro-
blem for a participant and month 0 ≤ ns < N as

max
x;u;s

FðxN Þ
s:t: xkþ1 ¼ Gðxk; uk; sk; pÞ; k ¼ ns : : : N − 1;

0 ≤ H ðxk; xkþ1; uk; sk; pÞ; k ¼ ns : : : N − 1;

uk ∈ Ω; k ¼ ns : : : N − 1;

xns
¼ xpns

:ð2:1Þ
The model is dynamic with a discrete time k ¼ 0 : : : N , where N ¼ 12 is the number

of rounds. The control vector uk ¼ uðkÞ has 15 (or 13 when van purchase is fixed; com-
pare section A.2.2) entries for each k ¼ 0 : : : N − 1 corresponding to the decisions the
participant can make in the test. The vector of dependent state variables xk ¼ xðkÞ com-
prises 16 entries. Both are listed in Table 2.1 (note that units of control and state
variables are only given implicitly depending on how they enter the model equations
and constraints). The vector sk denotes slack variables we introduced to reformulate
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min–max expressions by standard techniques using the constraints (2.27)–(2.31). For
details on these and further reformulations, see section A.2.2. We define

ðxp; upÞ ¼ ðxp0 ; : : : ; xpN ; up
0 ; : : : ; u

p
N−1Þ

to be the vector of decisions and state variables for all months of a participant. Certain
entries xpns

enter (2.1) as fixed initial values. Participant independent initial values
xp0 ¼ px0 are given alongside fixed parameters p in Table A.1 in the appendix. Random
values ξ appear in the equations, e.g., line 2810 in Figure A.1. However, a detailed ana-
lysis of the compiled code revealed that the random values are only dependent on an
initialization (seed) within the GW-Basic code; hence they are identical for all parti-
cipants and can be fixed in the optimization problem. See Table A.2 in the appendix.

The goal is to find decisions uk that maximize the overall balance at the end of the
time horizon. The objective function is given by

FðxN Þ ¼ xOB
N :

Whenever we use the expression relaxed optimization problem this will refer to the
case in which the sets of points in (2.21)–(2.24) are replaced by their convex hulls.
The state propagation law Gð·Þ is determined by the following set of equations for all
k ∈ f0; : : : ; 11g. For the sake of readability we omit the implicitly given units in the
equations.

The number of machines for 50 and 100 shirts per month depends on buying and
selling of machines. Note that there is a difference between buying and selling in the base
capital equation so that two independent controls are needed here:

xM 50

kþ1 ¼ xM 50

k þ uΔM 50

k − uδM 50

k ;ð2:2Þ
xM 100

kþ1 ¼ xM 100

k þ uΔM 100

k − uδM 100

k :ð2:3Þ

TABLE 2.1
Controls and states in theTailorshop optimization problem with k ∈ f0; : : : ; 11g for controls, respectively,

k ∈ f0; : : : ; 12g for states. Note that units are only given implicitly in the test scenario.

Decision uk unit1 State xk unit1

advertisement uAD
k MU machines 50 xM 50

k machines

shirt price uSP
k MU machines 100 xM 100

k machines

buy raw material uΔMS
k shirts workers 50 xW 50

k workers

workers 50 uΔW 50

k workers workers 100 xW 100

k workers

workers 100 uΔW 100

k workers demand xDE
k shirts

buy machines 50 uΔM 50

k machines vans xVAk vans

buy machines 100 uΔM 100

k machines shirts sales xSSk shirts

sell machines 50 uδM 50

k machines shirts stock xSTk shirts

sell machines 100 uδM 100

k machines possible production xPPk shirts

maintenance uMA
k MU actual production xAPk shirts

wages uWA
k MU material stock xMS

k shirts

social expenses uSC
k MU satisfaction xSAk —

buy vans uΔVA
k vans machine capacity xMC

k shirts

sell vans uδVA
k vans base capital xBCk MU

choose site uCS
k — capital after interest xCAk MU

overall balance xOB
k MU

1MU means money units.
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For the workers a single control which stands for hiring and firing workers is suffi-
cient since there is no such difference (one might even avoid the state variable if the
control was the current number of workers, but we stick to the hiring control for histor-
ical reasons):

xW 50

kþ1 ¼ xW 50

k þ uΔW 50

k ;ð2:4Þ

x
W 100

kþ1 ¼ x
W 100

k þ u
ΔW 100

k :ð2:5Þ

Demand depends on a time dependent parameter pDE
k as well as on the advertise-

ment expenses and the number of vans multiplied by a factor depending on the site,
f 1ðuCS

k Þ (see section A.2.1),

xDE
kþ1 ¼ 100pDE

k − 50þ
�
uAD
k

5
þ 100ðxVAk þ uΔVA

k − uδVA
k Þ

�
f 1ðuCS

k Þ:ð2:6Þ

While the influence of advertisement is bounded (see below and section A.2.2) the effect
of vans is unbounded. This leads to unboundedness of the whole problem. In sec-
tion A.2.2 our approach to generate reasonable solutions anyway is described.

For the vans again, two controls for buying and selling are needed due to differences
in the base capital. Shirt sales are determined by the slack variable sSSk , and shirts in
stock depend on the slack variables for actual production sPPk and shirt sales sSSk ,

xVAkþ1 ¼ xVAk þ uΔVA
k − uδVA

k ;ð2:7Þ

xSSkþ1 ¼ sSSk ;ð2:8Þ

xSTkþ1 ¼ xSTk þ sPPk − sSSk :ð2:9Þ

In the possible production equation, the part representing machine and worker de-
pendence consists of a term for each machine type with slack variables sM 50

k and sM 100

k ,
which are used to replace min expressions of workers and machines, multiplied by a
machine capacity term (machines for 100 shirts have double machine capacity). This
part is multiplied by the square root of workers’ satisfaction. The actual production
is determined by a slack variable.

xPPkþ1 ¼ ðsM 50

k ðxMC
k þ 4pP50

k − 2Þ þ sM 100

k ð2xMC
k þ 6pP100

k − 3ÞÞ

·
�
1

2
þ uWA

k − 850

550
þ uSC

k

800

�1
2

;ð2:10Þ

xAPkþ1 ¼ sPPk .ð2:11Þ

Raw material in stock depends on the use of material represented by the slack vari-
able for actual production and the purchase of new material. Wages and social expenses
influence satisfaction, and the machine capacity is determined by a slack variable:

xMS
kþ1 ¼ xMS

k þ uΔMS
k − sPPk ;ð2:12Þ
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xSAkþ1 ¼
1

2
þ uWA

k − 850

550
þ uSC

k

800
;ð2:13Þ

xMC
kþ1 ¼ sMC

k :ð2:14Þ

The equation for base capital,

xBCkþ1 ¼ xCAk þ sSSk · uSP
k − pPRk · uΔMS

k − 10000uΔM 50

k − f 2ðuCS
k Þ

þ 8000
xMC
k

pMM
uδM 50

k − 20000uΔM 100

k þ 16000
xMC
k

pMM
uδM 100

k

− uAD
k − uMA

k − ðxW 50

k þ u
ΔW 50

k þ x
W 100

k þ u
ΔW 100

k Þ · ðuWA
k þ uSC

k Þ

− 2sPPk −
1

2
ðxMS

k þ uΔMS
k − sPPk Þ− xSTk − 10000 · uΔVA

k

þ ð8000− 100kÞ · uδVA
k − 500ðxVAk þ uΔVA

k − uδVA
k Þ;ð2:15Þ

contains all income and expenses during a round added to the capital after interest from
the previous round. The income consists of the amount of shirts sold times the shirt price
sSSk · uSP

k , the sale of machines 8000ðxMC
k ∕ pMMÞuδM 50

k and 16000ðxMC
k ∕ pMMÞuδM 100

k (de-
pending on the current machine capacity), and the sale of vans ð8000− 100kÞ · uδVA

k .
Money is spent for the raw material bought times the price of a raw material unit

−pPRk · uΔMS
k , the purchase of machines−10000uΔM 50

k and−20000uΔM 100

k , the purchase of
vans −10000uΔVA

k , advertisement and maintenance −uAD
k − uMA

k , and the number of
workers times wages plus social expenses −ðxW 50

k þ uΔW 50

k þxW 100

k þuΔW 100

k Þ · ðuWA
k þ

uSC
k Þ. Additionally, each unit of material in stock at the end of a round costs half a money

unit (MU) −1 ∕ 2ðxMS
k þ uΔMS

k − sPPk Þ, the production of a shirt costs two MU −2sPPk ,
each shirt in stock costs one MU, and each van costs 500 MU per round −500ðxVAk þ
uΔVA
k − uδVA

k Þ. There is another amount of money to be paid, which depends on the site,
−f 2ðuCS

k Þ (see section A.2.2).
From the base capital, the capital after interest is computed by multiplying it with

an interest rate factor ð1þ pIRÞ. Overall balance, the objective function, beside capital
after interest, contains terms for material and shirts in stock, for machines, and for vans.
However, machines are worth less in the overall balance than if they were sold:

xCAkþ1 ¼ xBCkþ1ð1þ pIRÞ;ð2:16Þ

xOB
kþ1 ¼

xMC
k

pMM
ð8000ðxM 50

k þ uΔM 50

k − uδM 50

k Þ þ 16000ðxM 100

k þ uΔM 100

k − uδM 100

k ÞÞ

þ ð8000− 100kÞ · ðxVAk þ uΔVA
k − uδVA

k Þ
þ 2ðxMS

k þ uΔMS
k − sPPk Þ þ 20ðxSTk þ sPPk − sSSk Þ þ xCAk .ð2:17Þ

The feasible set of controls is defined by the following properties for all
k ∈ f0; : : : ; 11g:

uAD
k ∈ ½0; 10000�; uSP

k ∈ ½10; 100�;ð2:18Þ

uΔMS
k ∈ ½0; 50000�; uMA

k ∈ ½0.1; 100000�;ð2:19Þ
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uWA
k ∈ ½850; 5000�; uSC

k ∈ ½0; 10000�;ð2:20Þ

uΔW 50

k ∈ f−200;−199; : : : ; 200g; uΔW 100

k ∈ f−200;−199; : : : ; 200g;ð2:21Þ

u
ΔM 50

k ∈ f0; 1; : : : ; 200g; u
ΔM 100

k ∈ f0; 1; : : : ; 200g;ð2:22Þ

uδM 50

k ∈ f0; 1; : : : ; 200g; uδM 100

k ∈ f0; 1; : : : ; 200g;ð2:23Þ
uCS
k ∈ f0; 1; 2g:ð2:24Þ

Furthermore, for all k ∈ f0; : : : ; 11g the constraints

uΔW 50

k ≥ −xW 50

k ; uΔW 100

k ≥ −xW 100

k ;ð2:25Þ

uδM 50

k ≤ xM 50

k ; uδM 100

k ≤ xM 100

kð2:26Þ

need to hold. Slack variables are used to reformulate min expressions (see also section
A.2.2), and the bounds on the slack variables read as

sPPk ≤ xMS
k þ uΔMS

k ; sPPk ≤ xPPkþ1;ð2:27Þ

sMC
k ≤ pMM; sMC

k ≤ 0.9xMC
k þ 0.017

uMA
k

xM 50

kþ1 þ 10−8xM 100

kþ1 þ 10−8
;ð2:28Þ

sSSk ≤ xSTk þ xAPkþ1; sSSk ≤
5

4

�
xDE
k

2
þ 280

�
· 2.7181−

uSP
2

k
4250 ;ð2:29Þ

sM 50

k ≤ xW 50

kþ1 ; sM 50

k ≤ xM 50

kþ1;ð2:30Þ

sM 100

k ≤ xW 100

kþ1 ; sM 100

k ≤ xM 100

kþ1ð2:31Þ

for all k ∈ f0; : : : ; 11g. sPPk is used for the minimum of possible production and material
in stock. With sMC

k , the minimum of maximum machine capacity pMM and the machine
capacity determined by loss of capacity over time and the recovery by maintenance is
described. Here, the first 10−8 in the denominator comes from a modeling bug; see
section A.2.2. Finally, sSSk is used to reformulate the minimum of shirts available for
sale xSTk þ xAPkþ1 and a nonlinear term depending on the demand and the shirt price. Note
that 2.7181 has been used in the GW-Basic code instead of exp.

To sum up, every single optimization problem is of the general form (2.1), where the
functions Gð·Þ and Hð·Þ are smooth, nonlinear functions of the unknown variables x, u,
and s. The nonlinearities are often bilinear but sometimes also include denominators and
exponentials.

3. Optimization and numerical results. We want to solve a series of optimiza-
tion problems of the form (2.1) for different participant data that have been obtained
experimentally. In section 3.1 we describe the algorithms and software we used to
achieve this goal. In section 3.2 examples of optimal solutions are displayed and dis-
cussed for illustration. The important issues of integrality and nonconvexity that arise
in our problems are discussed in section 3.3. We close by discussing the use of Lagrange
multipliers of artificial constraints as a means to further investigate good and bad de-
cisions of a participant in section 3.4.
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3.1. Implementation. To be able to analyze and visualize the data in a conve-
nient way, to have a simulation environment for own studies, and to be able to auto-
matize the optimization of all 2088 ¼ 174 · 12 problems, we implemented the software
framework Tobago [45]. It is publicly available under an open source license, includes a
GUI, and may as well be used for experimental setups. In this study, however, we
exclusively used the GW-Basic implementation for tests to have consistent data
and Tobago only for optimization and analysis.

We interface the data with optimization solvers via an automated call of AMPL [19]
to be able to easily exchange optimization solvers that have an AMPL interface. In
this study we compare three different optimization solvers: Ipopt [50], Bonmin [10],
and Couenne [6]. The first one is a local nonlinear programming solver based on an in-
terior point method. Bonmin is a solver for MINLPs whose continuous relaxation is con-
vex (convex MINLPs) and uses Ipopt for the solution of relaxed problems. Couenne is a
global solver for MINLPs whose continuous relaxation is nonconvex (nonconvex
MINLPs). All three are available within the COIN-OR open source initiative. We used
the most current stable version, 0.2.2, of Couenne, and for better comparability the ver-
sions 1.1.1 of Bonmin and 3.6.1 of Ipopt it is interfaced with. For all solvers we used the
default settings exclusively and the MA27 sparse solver for numerical linear algebra.

All computational times refer to a two core Intel CPU with 3GHz and 8GB RAM
run under Ubuntu 9.10.

3.2. Optimal solutions. In total, 2088 optimization problems have been solved.
Depending on the value of ns in (2.1), each consists of 13ðN − nsÞ control, 16ðN − nsÞ
state, and 5ðN − nsÞ slack variables. The total number of optimized variables for all 174
participants sums up to

nvar ¼ 174
XN−1

ns¼0

34ðN − nsÞ ¼ 174 · 2652 ¼ 461448:

This many variables are obviously difficult to discuss and visualize comprehensively.
From this large set of results we chose a few which illustrate how optimal solutions relate

FIG. 3.1. Shirt price uSP
k of two different participants in solid lines. The dotted lines show optimal solu-

tions of (2.1) starting at different months ns. Both participants should have chosen higher prices most of the
time. Depending on their other choices, the optimal solutions evolve differently over time. On the left-hand side
the participant’s tailorshop is developing towards high demand and little stock of shirts; hence the optimal shirt
price to maximize profit is increasing. On the right-hand side the demand is declining and the stock of shirts
increasing; hence the optimal price is falling with time.
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to the choices made by the participant, compared to solutions for different values of ns,
and compared to optimal solutions of other participants. These solutions have been ob-
tained with the local optimization code Ipopt and an outer loop with random start values
for the optimization. Hence it needs to be stressed that the interpretations are always
under the assumption that the obtained results are close to the global optima.

In Figure 3.1 the shirt price control function uSP
k of two participants is displayed. In

addition to the values chosen by the participants, all optimal solutions are also depicted,
giving an idea of what the participants could have done to improve their performance. It
is interesting to observe that the optimal solutions corresponding to the two participants
show different behavior, depending on the start values xpns

in (2.1).
In Figure 3.2 the important state variable xOB

k is depicted for one representative
participant. As the value of this function at the end time k ¼ N is the objective function
that is to be maximized, the function shows how much better the optimal solution per-
forms in comparison to the participant. There are only minor deviations from a mono-
tonic increase that result mainly from the investment into raw material which is not
profitable within the overall balance, but as a resource for future profit.

3.3. Local maxima and integer solutions. The optimization problems (2.1) are
nonconvex. Depending on initial values for the optimization variables different local
maxima can be found. Hence one has to use a global optimization solver, such as
Couenne or one of the solvers listed on [13]. As mentioned above, we used different sol-
vers to obtain solutions. Table 3.1 shows an overview of average computational times
and objective function values that were obtained with Ipopt and Bonmin.

We ran the global solvers Couenne and BARON only on single optimization in-
stances, as the computational demand was too high. On typical instances, Couenne
was able to solve (2.1) for ns ¼ 11 in approximately 3 seconds. For the next larger pro-
blem, ns ¼ 10, however, the branch-and-bound tree grew too fast. The solver terminated
after processing 600000 nodes in 7 hours because the computer ran out of memory. The
stack comprised about 2 million open nodes at that time. The best solution at that time
was 500497 with the upper bound of 506610 still leaving a certain gap. For comparison,

FIG. 3.2. Left: State variable overall capital balance xOB
k . The participant’s trajectory in solid; the optimal

solutions of (2.1) starting at different months ns in dotted lines. The function is almost monotonically increas-
ing, which is due to the number of vans being fixed to the participant’s decision. The purchase of raw material is
the main reason for the kink at month 6. Right: Purchase of raw material. Because of the comparatively low
price in month 6 (compare Table A.2) a large part of the material that is needed for the months 7–12 is bought.
Because the participant herself/himself did not do this, an additional kink at month 8 occurs for optimal solu-
tions with ns ¼ 7, 8. This is qualitatively similar for almost all data sets.
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the objective function values found by Bonmin and Ipopt are 490385 and 500779,
respectively. When heuristic nonconvexity options num_resolve_at_root and
num_resolve_at_node are used with a value of 1 (or 2) for Bonmin, an integer solu-
tion with value 500188 (500438) is found after 142 (317) seconds, which is considerably
higher than the 0.2 seconds with the standard settings. With tight bounds on all state,
control, and slack variables (some of them even fixed) and the newer version Couenne
0.3.2 a solution could be obtained in 30 minutes, but even so ns ¼ 9 was not solvable on
our machine.

A similar behavior occurred when we used BARON with ourGAMS interface on the
NEOS server. Although computational times are not comparable due to the different
servers and the different preprocessing steps of AMPL and GAMS, the runtime for
BARON also increased drastically when the number of variables doubled from
ns ¼ 11 to ns ¼ 10. While instances for ns ¼ 11 could be solved within 3 seconds,
the ones for ns ¼ 10 could only be solved in the time limit of 8 hours when bounds were
tightened to small intervals. An exact investigation of the reasons for this drastic in-
crease in computational demand is future work.

Obviously for one participant data set the computational times are prohibitive for
global approaches. For the analysis of all 174 participants we therefore solved 2088 NLP
relaxations and MINLPs with the local optimizers Ipopt and Bonmin.

A crucial feature of our method is that the How much is still possible–function (see
section 4.1) decreases monotonically with ns increasing. To take this into account, we
exploit this knowledge in our a posteriori analysis. We define

ðx�; u�; s�Þ ¼ ðx�ns
; : : : ; x�N ; u

�
ns
; : : : ; u�

N−1; s
�
ns
; : : : ; s�N−1Þ

as a locally optimal solution obtained by solving problem (2.1) for month ns. We initi-
alize the variables for problem (2.1) for month ns − 1 according to

TABLE 3.1
Average computational times in seconds and average objective function values for the solutions of pro-

blems (2.1) per participant calculated from the 174 data sets. The rows show the start month ns, the columns
results for Ipopt for the relaxation of (2.1), and Bonmin, respecting the integrality conditions.

CPU [sec] Objective function
ns Ipopt Bonmin Ipopt Bonmin Gap

0 0.65 2289 397613 340163 4.5 %

1 0.62 1545 379243 319133 6.9 %

2 0.48 908 359958 296037 6.4 %

3 0.39 556 341110 282423 10.3 %

4 0.33 366 323728 274949 9.6 %

5 0.31 163 307665 263333 12.8 %

6 0.25 66 292389 254858 14.4 %

7 0.20 14 277730 251187 15.1 %

8 0.15 5.48 262800 235850 17.2 %

9 0.11 2.34 249186 233318 17.8 %

10 0.07 0.54 236290 220031 15.9 %

11 0.03 0.10 220717 210760 14.4 %
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xns−1 ¼ xpns−1;

uns−1 ¼ up
ns−1;

xk ¼ x�k; k ¼ ns : : : N;

uk ¼ u�
k; k ¼ ns : : : N − 1;

sk ¼ s�k; k ¼ ns : : : N − 1;ð3:1Þ

and sns−1 according to (A.6–A.10). This is a feasible solution because of
xns

¼ x�ns
¼ xpns

¼ Gðxpns−1; u
p
ns−1; sns−1; pÞ with objective function value x�;OB

N . To avoid
local maxima with a worse performance, we require that the inequality

xOB
N ≥ x�;OB

Nð3:2Þ

holds. This inequality can either be added to (2.1) when relaxed problems are solved
with local optimization algorithms or be used as a cutoff value in a branch-and-bound
setting to reduce the search tree. Computational experience shows that the primal-dual
interior point solver we are using cannot exploit the initialization to its full extent, and in
many cases Ipopt converged to locally infeasible points although it started from a pri-
mally feasible one. Future studies should therefore include active-set based solvers. For
this study we iterated in an inner loop with random initializations until for all problems
inequality (3.2) was fulfilled, i.e., Ipopt returned a feasible solution.

Within our analysis approach, local maxima can lead to a violation of the goal to
have an objective measurement for participant performance. Whenever possible, global
solvers with a guaranteed, deterministic global maximum should be used. If the size of
the problem is still too large for current algorithms and computational platforms, we
propose to use relaxations and include (3.2) as a heuristic compromise.

Several of the control variables are restricted to integervalues; compare (2.18)–(2.24).
A comparison of (locally) optimal relaxed and integer solutions shows that some of the
variables show typical (qualitatively similar throughout all solutions, e.g., variables

FIG. 3.3. Left: Optimal choices of site for one participant and all start months ns, calculated with Ipopt
(green, relaxed values between 1.1 and 1.9) andBonmin (blue, integer values of 0, 1, and 2). Right:Howmuch is
still possible–function for one participant, calculated with Ipopt (green, upper curve) and Bonmin (blue, lower
curve). As in this figure, the integer gap seems to be largest for intermediate values of ns for most instances;
compare also the average values in Table 3.1. However, this interpretation is subject to the fact that all solutions
are only locally optimal.
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are at their upper bounds) behavior for most xpns
, such as themaintenance uMA

k or the pur-
chaseof rawmaterialuΔMS

k .Others, inparticular thenumbersofmachinesandworkers, the
shirt priceuSP

k , and the choice of the siteuCS
k , aremore sensitive to local optima and/or the

fixation of some of the variables to integer values. Figure 3.3 shows an example.

3.4. Analyzing Lagrange multipliers. Using optimization as an analysis tool
yields insight on several levels. A priori unknown structural properties of the problem,
e.g., the unboundedness due to the van bug, can be detected. Also the performance of a
participant can be compared to the optimal solution, and the How much is still possible–
function to be discussed in section 4 delivers a temporal resolution of this performance.

But even a more detailed analysis is possible. While an analysis of the How much is
still possible–function indicates at what rounds the participant made particularly good
or bad decisions, the question of what of the decisions contributed significantly to the
success or failure remains and might be of importance in a given test scenario. A global
approach2 would be to fix exactly one entry of uns

to the value chosen by the participant
and compare the result of the optimization to the one without this constraint. The dif-
ference between the two objective function values then indicates exactly how much im-
pact this particular decision had. The obvious drawback is that the number of
optimization problems that need to be solved increases by a factor of N · nu, where
nu is the number of controls per month.

As a compromise we propose to combine two concepts. First, the comparison of the
participant’s decisions at month ns with the optimal solution, up

ns
− u�

ns
, gives a global

indication of differences in the controls. However, it is unclear from this comparison how
significant a single deviation is. Therefore we use, second, Lagrange multipliers for the
participant’s decisions to measure the effect on the objective function. We augment pro-
blem (2.1) with the additional constraint

uns
¼ up

ns
ð3:3Þ

to obtain the optimization problem

max
x;u;s

FðxN Þ
s:t: xkþ1 ¼ Gðxk; uk; sk; pÞ; k ¼ ns : : : N − 1;

0 ≤ Hðxk; xkþ1; uk; sk; pÞ; k ¼ ns : : : N − 1;

uk ∈ Ω; k ¼ ns þ 1 : : : N − 1;

xns
¼ xpns

;

uns
¼ up

ns
:ð3:4Þ

Note that necessarily x�nsþ1 ¼ xpnsþ1; hence problem (3.4) for month ns has the same so-
lution as problem (2.1) for ns þ 1. The replacement of (2.1) by (3.4) will yield the same
results for the series of all ns and does not imply the need for additional optimization
problems to be solved.

The advantage of formulation (3.4) is that an optimization code will also calculate
the dual variables or Lagrange multipliers λns

for the constraints (3.3). It is well known
that the Lagrange multipliers indicate the shadow prices, i.e., how much the objective
function will vary if the corresponding constraints were relaxed. However, it needs to be

2We assume that we solve all optimization problems to global optimality in this section.
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stressed that this information is a local one for the point ðxpns
; : : : ; xpN ; u

p
ns
; : : : ; up

N−1Þ and
assumes that the active-set of inequality constraints does not change. As an example the
Lagrange multiplier for the shirt price λSPns

will denote the deviation of the objective func-
tion for uSP

ns
þ ϵ. Table 3.2 shows an example. The control vector of a participant, the

optimal choice of controls, and the Lagrange multipliers are listed.
The analysis of a participant’s decisions hence needs to take into account both the

global information of the difference uP
ns
− u�

ns
and the local quantification from the

Lagrange multipliers λns
. A good estimate can be obtained from the entries of the com-

ponentwise product λns
· ðuP

ns
− u�

ns
Þ.

4. A correct indicator function for Tailorshop. We propose to use the solu-
tions of (2.1) for all ns as an indicator function for the performance of a participant. The
approach described in section 4.1 is generic and should also be used for other test sce-
narios in complex problem solving in the future. In section 4.2 we describe the results we
obtained by using this indicator function for a psychological study.

4.1. Howmuch is still possible. On an individual basis, the performance of every
participant can be better understood by a comparison with optimal solutions as illu-
strated in section 3. For an evaluation of large data sets that shall be related to char-
acteristics of participants or experimental setup, an automatization and a reduction to
an indicator function are necessary. Once the performance of all participants has been
determined, an aggregation and further statistical analysis can be performed.

To measure performance within the Tailorshop scenario, different indicator func-
tions have been proposed in the literature. As discussed in the introduction, they have
usually unknown reliability and validity.

We solve an optimization problem (2.1) for every round of the participant’s data,
starting with exactly the same conditions as the participant. We compare these optimal
values that indicate How much is still possible if all future decisions were optimal. Thus,
we can analyze at what rounds potential for a higher end time objective function value
has not been used.

A comparison of the end time capital with the one of the optimal solution from start
month ns ¼ 0 (which is identical for all participants if we neglect the van purchase de-
cision; compare section A.2.2) also gives an objective indicator. However, what we pro-
pose is a far more powerful analysis approach: we want to also say when (within the 12

TABLE 3.2
Lagrange multipliers for the specific case of one participant and the final month ns ¼ 11. The columns

show different entries of the control vector uð·Þ; compare Table 2.1. The rows show three things: first, the
decisions up

ns
taken by the participant; second, the optimal (relaxed) solution u�

ns
calculated with Ipopt; third,

the Lagrange multipliers λns
for the constraints (3.3).

uAD
k uSP

k uΔMS
k uMA

k uWA
k uSC

k uCS
k

up
ns

3700 53 999 1400 1130 100 1
u�
ns

4e-07 64.9 3e-07 34.3 1510 4e-07 0
λns

-1.003 473 -1.2 -1.003 10.7 4.9 -752

uΔW 50

k uΔW 100

k uΔM 50

k uΔM 100

k uδM 50

k uδM 100

k uΔVA
k uδVA

k

up
ns

0 0 0 0 0 0 1 0
u�
ns

-4.9 0 0 0 2.9 0 1 0
λns

-1233 3990 547.1 -4050 2552 40 -3726 619
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rounds) significant performance deviations occurred, and we want to specify details
on which decisions were particularly good or bad ones with respect to the overall
outcome.

Note that a comparison with the controls of the optimal solution for starting month
ns ¼ 0 would not yield a good indicator function, as there might be multiple ways to
perform well. E.g., if, due to his previous actions, a participant has many shirts in his
stock, good decisions may differ drastically from the optimal solution for starting month
ns ¼ 0 in which in every instance all shirts have been sold.

In a certain analogy to the cost-to-go-function in dynamic programming, the opti-
mal objective function values for all rounds yield the monotonically decreasing How
much is still possible–function. We look at the series of optimal objective function values
F�ðxN ;nsÞ for ns ¼ 0; : : : ; N − 1. By comparing F�ðxN ;ns ¼ kÞ with F�ðxN ;ns ¼ kþ 1Þ
we obtain the exact value of how much less the participant is still able to obtain, assum-
ing he would take the best solutions from now on—in other words, whether the tailor-
shop is in a worse situation than it could be after the participant’s decisions. We define
the nonpositive (for global optima) Use of potential–function

ΔPk ≕ F�ðxN ;ns ¼ kþ 1Þ− F�ðxN ;ns ¼ kÞ:ð4:1Þ

Note that in general a relative loss given as a percentage can also be used; however, this
does not make sense when the function F�ð·Þ is not bounded as in our case.

As indicated in Figure 4.1 different ways to analyze the complex solving process may
yield different results. Also, the important issue of selling all shirts and material in the
last round is only insufficiently captured by the previous indicator functions. For most of
the participants’ data the previous indicator and the new, optimization-based one co-
incide; compare Figure 4.2(right). This is mainly due to the fact that two of the main
effects to make nonintuitive investments into the future were almost never found by the
participants: first, the purchase of a high number of vans to stimulate demand (compare

FIG. 4.1. Different ways of determining good and bad participant–performance over time. The solid lines
show the evolution of the objective function. The dotted lines show theHowmuch is still possible–function which
is composed of objective function values of separate optimization problems (2.1). The traditional way is to
compare the changes in the objective function value. In our approach we compare the slopes of the How much
is still possible-function. Left participant: The two variants would qualitatively coincide: not so good from 0–6,
good performance from 7–10, not so good again from 11–12. In the right scenario the objective function values
seem to correspond to alternations in the quality of the performance, which can not be verified by analyzing the
How much is still possible–function which has an almost constant negative slope.
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section A.2.2) and second, the knowledge about the lowest price of the material in
round 6.

We conclude that the newly proposed methodology is more reliable and generally
applicable to test scenarios in complex problem solving. Non-optimization-based indi-
cator functions give good estimates as long as the aforementioned effects are not
exploited, which is to be expected, e.g., in studies of learning behavior when participants
would be tested several times.

4.2. Impact of emotion regulation. In the study 174 data sets were used, every
one from a different participant who had but one try. For 42 of them positive feedback
was used in the sense that in every round, regardless of the decisions the participant
took, a sum of 20000 money units (MUs) was added to the capital. For 42 participants
negative feedback in the form of a reduction of 8000 MUs was implemented. These mod-
ifications are implemented in the model and readjusted in the a posteriori analysis, of
course.

In a previous study [5] it was shown that participants who receive negative
feedback perform better than those who receive positive feedback. In our new study
we additionally considered the ability to regulate emotion. The psychological results
of this study are explained in [4] in which details on the experimental setup can also
be found. As a main result, an interaction between feedback and emotion regulation
could be shown: participants with a high ability of emotion regulation perform better
when they get negative feedback, while those with a low ability to regulate their emo-
tions perform badly for negative and well for positive feedback. This is illustrated in
Figure 4.2(left).

In a second study, films and music were used to induce happy, neutral, and sad
effects. Additionally we measured emotion regulation. The study was based on data
from 90 participants, 30 in each effect condition. Again, emotion regulation had a great
impact on complex problem solving. A high ability to regulate emotion improved com-
plex problem solving and reduced the number of mistakes.

FIG. 4.2. Left: Average values of theHowmuch is still possible–function over all participants with emotion
regulation properties/feedback a) low/positive, b) low/negative, c) high/positive, d) high/negative. Partici-
pants with a low ability of emotion regulation performed better with positive feedback; those with high ability
of emotion regulation performed better with negative feedback. Right: Average values over all 174 participants
for different indicator functions. The Use of potential–function ΔPk is given by (4.1). Profit indicates
ΔxCAk ¼ xCAkþ1 − xCAk , Delta objective indicates ΔxOB

k ¼ xOB
kþ1 − xOB

k . The trajectories have been rescaled for bet-
ter comparability. The potential in month ns ¼ 11 (selling all of the material on stock) has not been used by the
majority of participants.
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5. Summary and outlook. We presented a challenging problem class of noncon-
vex MINLPs. They originate from economic test scenarios that are used in the analysis
of human complex problem solving. Starting from GW-Basic source code of the test
scenario we developed a mathematical optimization model to optimize performance
starting from prespecified initial values. This model needed to be reformulated in several
ways to avoid nondifferentiabilities, division by zero, and unboundedness.

The Tailorshop test scenario was invented more than 25 years ago, without any
intention to set it up suited for mathematical optimization. Our study revealed several
shortcomings of the model. This insight can be used for defining better test scenarios in
the future. All characteristics such as nondifferentiabilities, random values, or un-
bounded decision variables should be left out, as they do not really contribute to the
difficulty of the scenario itself but mainly to the difficulty of solving the problem math-
ematically to optimality.

We solved altogether 2088 optimization problems and discussed the role of integer
variables and the nonconvexity by comparing different algorithms. The difficulties in
doing so for a large number of medium-scale nonconvex MINLPs are challenging.
We formulated and used a structure exploiting lower bound to exclude certain unwanted
local maxima. The optimization results were used in two ways. First, to gain additional
insight into individual performance by comparing it to the optimal solution which is
often nonobvious. Second, to use the results in an automated way as a new analysis
tool for process-dependent evaluation of the performance.

This novel methodology yields a valuable (and accessible [45]) analysis tool for
psychologists to evaluate participants’ performance. We discussed why there is no alter-
native to the How much is still possible–function, especially when participants have
more insight, e.g., by repetition of tests. Furthermore, we proposed to add artificial
constraints to the optimization problem and use the Lagrange multipliers of these con-
straints as an indication of what decisions contributed significantly to good or bad per-
formance. By providing this mathematical technology to analyze participants’ decisions
in more detail, a whole set of interesting scenarios with a time- and decision-specific
resolution can be included in future psychological investigations.

This paper provides a reference for researchers in complex problem solving. But we
also hope for a stimulating effect on optimization. Future studies should concentrate on
restarts for the MINLPs, on a comparison with active-set based solvers, problem-specific
cuts, tight bounds also for nonlinear subexpressions, and on more efficient techniques to
find global optima.

Appendix. A.

A.1. Details of the optimization model. We list several parameters and initial
values that are of relevance for the optimization problem (2.1) in Tables A.1
and A.2. Figure A.1 shows an extract of the original source code.

A.2. Derivation of the optimization model. We discuss some properties of
(2.1) in more detail.

A.2.1. Integer variables and bounds. For a carefully specified optimization
problem the definition of the feasible set of all control variables is crucial. Within
the test scenario, for several decisions there are no bounds and it is unclear whether
variables are restricted to be from a finite set or not. Although the GW-Basic code does
not specifically distinguish between integer and real variables, all participants restricted
themselves to integer numbers for the choices they made. Hence we decided to define
some of the variables, e.g., the number of workers to be hired, as integer variables.
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The only clearly defined integer variable within the GW-Basic code is the choice of
the showroom where the shirts are being sold. There are only three choices: city center,
city, and suburbs, which we identify with 2, 1, and 0, respectively. We define

f 1ðuCS
k Þ ≔

8>><
>>:

1.2 if uCS
k ¼ 2

1.1 if uCS
k ¼ 1

1.0 if uCS
k ¼ 0

; f 2ðuCS
k Þ ≔

8>><
>>:

2000 if uCS
k ¼ 2;

1000 if uCS
k ¼ 1;

500 if uCS
k ¼ 0.

TABLE A.1
Fixed initial values x0 and parameters p. Note that some initial values are not needed, as they do not enter

the right-hand-side function Gð·Þ. Note also that units are only implicitly given in the test scenario.

State [unit] xk x0 ¼
machines 50 [machines] xM 50

k 10

shirts stock [shirts] xSTk 80.7164

machines 100 [machines] xM 100

k 0

vans [vans] xVAk 1

workers 50 [workers] xW 50

k 8

material stock [shirts] xMS
k 16.06787

workers 100 [workers] xW 100

k 0

machine capacity [shirts] xMC
k 47.04

demand [shirts] xDE
k 766.636

capital after interest [MU1] xCAk 165774.66

Parameter [unit] p p ¼
max. demand [shirts] pMD 900
interest rate [—] pIR 0.0025
max. machine capacity [shirts] pMM 50
debt rate [—] pDR 0.0066
max. satisfaction [—] pMS 1.7

1MU means money units.

TABLE A.2
Fixed, but time-dependent, parameters p. Note that only pPRk has an implicitly given unit. The other para-

meters are dimensionless.

k pPRk [MU1] pDE
k [—] pP50

k [—] pP100

k [—]

0 4.00000 0.616192 0.583334 0.178080
1 4.09497 0.269502 0.080131 0.365665
2 8.26718 0.692422 0.599074 0.725099
3 4.87143 0.844487 0.177331 0.207369
4 4.85305 0.697927 0.075705 0.092567
5 5.90983 0.253290 0.669259 0.318009
6 5.18731 0.805071 0.587936 0.056364
7 7.09909 0.457335 0.107187 0.543777
8 6.77216 0.889342 0.788597 0.157994
9 7.61718 0.371173 0.370508 0.746488
10 8.02385 0.029353 0.908646 0.204585
11 2.68115 0.362480 0.166743 0.303585

1MU means money units.
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To be able to relax the feasible set of uCS
k , we write these functions as

f 1ðuCS
k Þ ≔ 1þ uCS

k

10
; f 2ðuCS

k Þ ≔ 500þ 250uCS
k þ 250uCS

k · uCS
k :

For optimization algorithms the existence of tight lower and upper bounds makes a
huge difference in runtime. By a process of trial and error we found several bounds that
were never violated by any optimal or participant control. We define the feasible setΩ of
the control variables as given by the conditions (2.18)–(2.24).

A.2.2. Reformulations. Although there are some shortcomings in the economic
model and the mathematical representation including nondifferentiabilities and no tight
bounds on the variables is everything but favorable for a fast and reliable solution, we
had to postpone the formulation of test scenarios with better properties to future work
since most of the data of the 174 participants had already been evaluated when the
interdisciplinary cooperation started. Hence the main issue was to reformulate the op-
timization problem to be able to solve it under the constraint to keep it compatible with
the available data.

Concerning nondifferentiability we strived to formulate the problem as a smooth
optimization problem to allow more solvers to be able to treat the problem instances,
if possible without additional binary variables.

FIG. A.1. Extract of the original GW-Basic code of the Tailorshop example which is the basis of the
mathematical optimization problem. Special care is necessary to separate already updated variables xkþ1 from
the values xk; compare the role of xMS

k ≈ RL and xPPk ≈ PM in lines 2690 to 2710.
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As a first example, consider the state progression equation for the machine capacity
xMC
k . A direct translation of the code would read as

xMC
kþ1 ¼ min

�
pMM; 0.9xMC

k þ 0.017
uMA
k

xM 50

kþ1 þ 10−8xM 100

kþ1

�
:ðA:1Þ

What was intended here was to include a safeguard to avoid division by zero by using
xM 50

kþ1 þ xM 100

kþ1 þ 10−8 as the denominator, but the GW-Basic implementation used for the
evaluation includes the erroneous first version. In our model we add 10−8 to the denomi-
nator in (A.1) to avoid division by zero but get comparable values for xMC

kþ1.
Intuitively the fact that we are dealing with a nonconvex model and that there are

no bounds on the variables probably means that the problem is unbounded. Indeed, the
analysis of optimization results confirmed that due to a combination of a modeling error
and the unboundedness of the controls it is possible to drive the overall profit to infinity.
In the equation that describes the overall demand

xDE
kþ1 ¼ aþ

�
min

�
uAD
k

5
; pMD

�
þ 100xVAkþ1

�
· b

there is an upper bound on the effect of the advertisement uAD
k by means of a min ex-

pression but not on the impact of vans xVAk . In other words, by buying more and more
vans you can create an arbitrarily high demand. Demand itself enters into the number of
shirts sold

xSSkþ1 ¼ min

�
xSTk ;

5

4

�
xDE
k

2
þ 280

�
· 2.7181−

uSP
2

k
4250

�
:

Therefore you can sell an arbitrarily high number of shirts, if only you buy enough vans.
However, none of the participants detected this error in the model—this only happened
in a related study where participants got several repetitions. We discussed several ways
to remove this unboundedness from the problem, e.g., setting a lower bound on the ca-
pital to avoid unrealistic infinite debts, possibly by fixing this lower bound to the lowest
value over all data sets to keep things consistent. However, the effect of the vans was still
too strong. Eventually we decided to fix the number of vans in the optimization problem
to exactly that of the respective participant and to focus on the other decisions that need
to be taken.

The two expressions

xSAkþ1 ¼ min

�
pMS;

1

2
þ uWA

k − 850

550
þ uSC

k

800

�
;ðA:2Þ

xDE
kþ1 ¼ min

�
uAD
k

5
; pMD

�
ðA:3Þ

can be directly replaced by

xSAkþ1 ¼
1

2
þ uWA

k − 850

550
þ uSC

k

800
;

1

2
þ uWA

k − 850

550
þ uSC

k

800
≤ pMS;ðA:4Þ
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xDE
kþ1 ¼

uAD
k

5
;

uAD
k

5
≤ pMD:ðA:5Þ

We replace the remaining min–max expressions by introducing

sPPk ≈minðxPPkþ1; x
MS
k þ uΔMS

k Þ;ðA:6Þ

sMC
k ≈min

�
pMM; 0.9xMC

k þ 0.017
uMA
k

xM 50

kþ1 þ 10−8xM 100

kþ1 þ 10−8

�
;ðA:7Þ

sSSk ≈min

�
xSTk þ xAPkþ1;

5

4

�
xDE
k

2
þ 280

�
· 2.7181−

uSP
2

k
4250

�
;ðA:8Þ

sM 50

k ≈ minðxW 50

kþ1 ; x
M 50

kþ1Þ;ðA:9Þ

sM 100

k ≈ minðxW 100

kþ1 ; xM 100

kþ1 Þ;ðA:10Þ

and adding the corresponding constraints (2.27)–(2.31).
A constraint that states that new machines may only be bought when the machine

capacity xMC
k has at least the value of 35, or in other form

0 ≤ u
ΔM 100

k ≤
�
0 if xMC

k < 35;
∞ if xMC

k ≥ 35
ðA:11Þ

would be a little bit more tricky to reformulate in a way that is suited for a derivative-
based optimization algorithm. Fortunately, due to the model bug in (A.1), xMC

k will often
be at its upper bound pMM in optimal solutions. The model error whenever a participant
should have xMC

k < 35 seems thus acceptable. Thus we simply ignore constraint (A.11).
Another issue is the interest rates, which have a constant value but a different one

for positive or negative capital xBCkþ1. This nondifferentiability in the right-hand side
could be smoothed out easily by defining an appropriate function piecewise with the
constant value pIR for xBCkþ1 ≥ δ, the constant value pDR for xBCkþ1 ≤ −δ, and a smoothing
function for the interval ½−δ;δ�, e.g., based on an arcus tangens. However, to facilitate
implementation, we chose to use only the positive interest rate pIR. Whenever the
optimal solution does not require lending money (hence no xBCk < 0 for any month
k), obviously without loss of generality, this solution is also optimal for the case with
the higher interest rate. This requires another postprocessing that we needed to
automatize.

The absolute value that occurs in the right-hand side of the state xPPkþ1 can be ne-
glected because of the lower bound of 850 for the wages uWA

k .
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