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CHAPTER 14 

MICROWORLDS BASED ON LINEAR 
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SOLVING AND EXPERIMENTAL 

RESULTS1 
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University of Bonn, Germany 

ABSTRACT 

The method of computer-simulated scenarios has recently been introduced to study how people 
solve complex problems. This paper describes a special approach to constructing such 
microworlds by means of linear structural equation systems. Subjects’ task in the experimental 
situation is to first identify in a knowledge acquisition phase the causal structure of an hitherto 
unknown system. In a later knowledge application phase they have to control this system with 
respect to a given goal state. Knowledge that was acquired on the task is assessed both by 
means of causal diagrams - a method developed within this project and proven to be very 
useful - as well as by the degree of successful control performance. Three experiments on 
special attributes of such systems (active interventions versus observations only, effects of 
different degrees of Eigendynamik. the influence of different degrees of side effects) illustrate 
the approach. The mentioned factors have considerable influence on identification and control 
of the system SINUS. The conclusion deals with the advantages of an experimental approach 
in this area. 

Following the pioneering work of Dietrich Dorner (1980, 1987, 1990, 199 1) 
starting in the mid-seventies, several computer-simulated scenarios (some call 
it “microworlds”; e.g. Brehmer, 1992; Brehmer & Dorner, in press) have been 
developed and applied in correlational as well as in experimental studies on 

I This research reported herein was financially supported by Grant No. Fu 173/1 of the 
Deutsche Forschungsgemeinschaft. 
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complex problem solving (for a review see Funke, 1988,1991). For instance, 
in a computer-administered microworld called LOHHAUSEN, a subject has 
to take the role of an omnipotent mayor of a little town ( D h e r ,  1980,1987). 
In other work, a subject plays the role of a manager of a little shop 
(TAILORSHOP) or of an engineer in a Third World country (MORO; Pub- 
Osterloh & Lemme, 1987). In general, the new approach deals with the 
exploration and control of complex and dynamic systems by human 
individuals. 
According to DiSmer, subjects in such situations have to cope with the 
following task requirements: (1) they must deal with the complexity of the 
situation and with the connectivity of the variables involved since typically not 
only a few variables have to be handled with (LOHHAUSEN consists of about 
2000 variables!); (2) they must deal with the intransparency or opaqueness of 
the situation since typically not all information that is needed is available; (3) 
they must deal with dynamic developments of variables which - over time - 
change their states autonomously and make it necessary to anticipate trends; 
(4) in contrast to simple tasks having only a single goal they must deal with 
multiple goals some of which may contradict others (e.g., as a manager: pay 
high wages due to the trade-union’s request and at the same time maximize 
the company’s profits). 
This paper describes an approach in the area of complex problem solving 
developed in Bonn during the three years of the DYNAMIS project. It can be 
seen as an attempt to establish an experimentally and systematically oriented 
line of research on complex problem solving which should overcome some of 
the problems of early research (see the critical aspects mentioned by Eyferth, 
Schhann & Widowski, 1986, or by Funke, 1984). During its early phase, 
research was less coordinated and less rigorous with respect to traditional 
criteria of scientific precision. The main intention was the establishment of 
a new research paradigm, the method of computer-simulated scenarios. The 
Bonn approach represents a second generation of research activity no longer 
under pressure to argue for the existence of certain phenomena, but being able 
to introduce the first lines of ordinary research in a more settled phase of 
scientific development. 
The paper starts in part 1 with an outline of the DYNAMIS research 
philosophy, including a description of the dynamic task environment and of 
the dependent variables which measure quality of system identification and 
control. Part 2 deals with three experiments being in line with the presented 
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research philosophy. Part 3 summarizes the results and also give some ideas 
for further activities. 

The DYNAMIS Approach to Complex Problem Solving 

Early work in the research domain of complex problem solving suffered from 
certain weaknesses, some of them being: 
+ In most cases the definition of a subjects’ solution quality turned out to 

be highly arbitrary: how should one, e.g., determine the success of a 
town mayor? If one adds up the number of employees in the town, the 
energy used and the amount of money in the bank: what kind of 
measure would that be? What about its reliability and validity? 

+ Influence of previous knowledge on dealing with a microworld was at 
the same time assumed to be of high importance, but has never been 
controlled for. Even at the end of a simulated period it was absolutely 
unclear if and what subjects would have learned during the session. 

+ Each microworld was a world by its own. Only on a very global level 
comparisons to other microworlds were possible. Because of their 
idiosyncratic structure, phenomena turned out to oscillate greatly: 
sometimes certain effects were observed, sometimes not. Also, due to 
the missing replications, it was unclear how stable the results, often 
found with small samples, would be. 

+ From the beginning, subjects had to control the microworld without 
any opportunity to test certain hypotheses about assumed dependencies 
in the system. Due to this procedure, acquisition of knowledge could 
not be separated from its application. Also, if some subjects run the risk 
of hypothesis testing it could happen that according to their intervention 
and according to its nonlinear structure the microworld was brought in 
such a bad shape that they never escaped such an attractor despite good 
problem solving attempts. 

The line of research done in our Bonn laboratory therefore established the 
following principles: (1) It should always be possible to define the quality of 
a solution by comparing it with an optimal solution strategy. ( 2 )  The situation 
should realize the features of complex problems (complexity, connectivity, 
intransparency, Eigendynamik [i.e., autonomous changes without 
intervention], and multiple goals) as far as possible. Also, different 
microworld situations should be comparable with respect to these criteria. 
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(3) A detailed diagnostic procedure should reveal the subject’s development 
of hypotheses about the system. This implies that subjects have to be 
prompted repeatedly about the causal structure they assumed to the system. 
(4) There should be a clear distinction between a phase of knowledge 
acquisition (mainly realized by encouraging the subjects to explore the 
system) and a phase of knowledge application in which certain states of the 
problem space should be reached by the subjects as quickly as possible. In this 
last phase, performance measures should precisely indicate the quality of a 
subjects ’ intervention. 

The DYNAMIS Shell for Scenarios 
Trivially, before you can control a complex system, you must learn how it 
works. To study experimentally the acquisition, as well as the application, of 
knowledge we confront our subjects with dynamic computer-simulated 
scenarios. As a universal tool for constructing these scenarios a computer 
program called DYNAMIS serves as a shell, with which the experimenter can 
implement in a simple way different types of simulated systems which all 
have in common one formal background. This general frame is a linear 
equation system (see e.g., Steyer, 1984) which consists of an arbitrary number 
of exogenous (=x) and endogenous (=y) variables according to the following 
equation: 

(1) yc*1 = A  y’ + B x‘ 

where y’*l and y’ are vectors representing the state of the endogenous variables at times 
t+l and t; *is a vector representing the values chosen by the subject for the exogenous 
variables; A, B are matrices containing the weights for the variables. 

A set of measures for formally describing such systems has been suggested 
(e.g., Hiibner, 1989). An equation system is constructed according to 
theoretical considerations about the presumed influence of certain system 
attributes on task complexity (e.g., the effect of Eigendynamik or the 
influence of side effects or effects due to different interdependencies). It is 
not intended to simulate a domain of reality adequately, because that kind of 
simulation puts too many constraints on the attributes of the system to be 
useful for basic research on problem solving. Consequently, most of the 
simulated systems used in our research group have been “artificial”. With 
respect to a distinction made by Hays and Singer (1989) one can say that what 
we want our systems to possess is not physical fidelity, but rather functional 
fidelity. As an example see the SINUS system shown in Fig. 1. 
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Subjects are told that this fictitious system consists of living creatures from 
a distant planet called SINUS. The “endogenous” variables are introduced as 
creatures labeled “Gaseln” (y “Schmorken” (y2) and “Sisen” (y3), the 

Olschen Gaseln 
10 

Figure 1: Causal structure of the system SINUS. The weight parameters in the standard 
configuration are set to a=l, b=O, ca.2.  and d 4 . 9 ,  but are changed due to 
the experimental purposes. 

“exogenous” creatures are called “Olschen” (x J, “Mukern” (xJ and “Raskeln” 
(xj). The system has the following structure (parameters a, b, c, and d 
represent variable weights, with a=l, b=O, c a . 2 ,  and d a . 9  being the standard 
set): 

(2) 
(3) 
(4) 

The task for the subjects is first to explore the system (i.e., to find out the 
causal links between the system variables) and then to control the endogenous 
variables (=the numbers of y-creatures) by means of the exogenous variables 
with respect to a set of given goal states. Parameters a to d are manipulated 
depending on the experimental conditions (see below). 

yll+l = 10.0 - xI1 + a - ylt + b + y3: 
y$+1 = 3 .O * ~ 3 ‘  + 1 .O * y2‘ + c * y3’, 
y3’+’ = 2.0 * ~ 2 ’  + 0.5 * x g ’  + d * y3’ 
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General Experimental Procedure 
In our experiments, subjects pass through at least two phases. In the first 
phase, the knowledge acquisition phase, subjects can explore the system and 
its behavior as they like (learning by exploration; see also Moray, Lootsteen, 
& Pajak, 1986; Shrager & Klahr, 1986). They can take actions (i.e., make an 
intervention on one or more of the exogenous variables) and observe the 
resulting effects in the endogenous variables. Figure 2 shows how the SINUS 
microworld is presented to subjects. 

Week 1 2 3 4 5 

State: 
Gaseln 1600 1700 1800 1900 2000 
Schmorken 900 957 1013 1055 1096 
Sisen 300 293 286 281 306 

............................................................................................................. 

Intervention: 
Olschen 
Mukem 
Raskeln 

10 10 10 10 ? 
12 11 13 28 ? 
-1  -1 -5 -5 ? 

Press “space bar“ to select an intervention, choose a value 
and then press “return” 

---____----_-__----.____________________----------------------------------.----------------------------------- 
Figure 2: Screen display of the numerical version of DYNAMIS when presenting 

system SINUS after four week (= trials) on the first block. The upper part 
shows the state of the three endogenous variables, the lower part shows past 
interventions. 

Exploration is possible within four blocks following one after the other. Each 
block consists of a certain number of trials (referred to as “weeks”in the cover 
story) which all depend on each other. From one block to another the system 
is reset to the same starting values. From time to time we measure the 
knowledge that has been acquired so far by asking subjects for a graphical 
representation of their structural knowledge (“causal diagrams”). In the 
second phase, called knowledge application phase, the subject has to reach a 
defined system state and try to maintain the variable values as close as 
possible to the values defined as goal states. In this phase, we measure the 
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quality of the operator’s control by assessing the distance between the current 
and the goal values for all endogenous variables. 
Some comments on measuring structural knowledge and system performance 
seem necessary at this point because this is central to our studies. A review on 
techniques for knowledge assessment can be found in Kluwe (1988). Also, 
Rouse and Morris (1986) discuss some of the diagnostic problems in more 
detail. 
Measures for quality of identification and control 
Starting with control per$mmnce quality, the goal is to determine how well 
a given goal state is approximated by the operator’s interventions. The 
classical approach requires the measurement of the deviation from the target 
system state in terms of the root mean squares criterion (RMS). This indicator 
reflects the mean deviation, independent of sign. The weights of individual 
deviations become increasingly higher the farther away they are from the 
target state. A good discussion of the frequently used RMS criterion can be 
found in Poulton (1973) and Bosser (1983). 
Our solution for this problem is a logarithmic transformation of the goal 
deviation. This transformation leads to an evaluation of distances which is 
from our point of view more efficient: larger distances are no longer weighted 
more heavily. Rather, they are considered less important by this 
transformation because of an assumed decrease in measurement reliability 
with increasing goal distance. The transformation, thus, reduces the error 
variance that increases as a function of the operator’s distance to the goal 
state. 
In the experimental section the variable “QSC“ refers to this kind of 
dependent variable (“Quality of System Control”). A low QSC score 
represents a good score because it results from low discrepancies between goal 
values and the values subjects reached on the endogenous variables through 
their control behavior. 
Measuring the structural knowledge an operator has acquired about a system 
also requires some kind of distance or similarity measurement. In this case the 
distance exists between the structural relations hypothesized by subjects and 
those implemented in the system. For this purpose, the subject marks on a 
sheet (or in some versions directly on the screen) the assumed causal 
relationships at certain points in time (either at the end of each trial or at the 
end of a block of trials). This results in a subjective causal structure similar to 
the real one shown in Fig. 1. 
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Quantification of structural knowledge requires the following steps: for each 
causal specification of a subject one first counts whether it belongs to one of 
three classes of knowledge (relational, sign, or numerical; for a similar 
classification, see Pliitzner & Spada, in press) and whether it is correct or 
false. Then, for each of the three levels one can determine the “quality of 
system identification” (QSI) in terms of the difference between “hits” (HI) 
and “false alarms” (FA), weighted by a “guessing” probability (p) according 
to the following scheme, which closely resembles the discrimination index P, 
from the two-high threshold model for recognition memory (see Snodgrass & 
Corwin, 1988; the proposed “correction for guessing” dates back to 
Woodworth, 1938): 

( 5 )  
The guessing probability for numerical parameters in adynamic system could, 
for instance, be set to zero. In this case all hits are counted relative to the 
maximal number of hits, max(H1). If one sets the guessing probability to 0.5 
in the case of sign knowledge (assuming that plus and minus relations are 
considered as equally probable by the subject), then errors lead to a reduc- 
tion in the QSI index for that level. 
The index for structural knowledge, which serves as a dependent variable in 
the following experiments, is called “QSI” (‘Quality of Identification”). A 
high QSI score reveals a good score because of high correspondence between 
implemented and assumed causal relations; it results from an additive 
combination of the QSI-values for all three knowledge levels. An evaluation 
study done by Miiller (in press) demonstrates considerable reliability and, 
thus, sufficient psychometric quality of this index. 

QSI = (1-p) x [HYmax(HI)]-p x [FA/max(FA)], -p I QSI I (1-p) 

Experimental Studies on System Properties2 

In the following section three experiments on the role of different system 
properties serve to illustrate the approach just outlined. The focus of the 
experiments is on the role of active intervention into a system vs. pure 
observation (Exp. l), on the influence of different degrees of Eigendynamik 
(Exp. 2), and on the influence of side effects (Exp. 3). For each of the 
experiments the presentation includes a description of the independent, as well 
as dependent, variables, subjects, material, and procedure, hypotheses and 

* This section follows partly the description of results given in Funke (1992). 
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result, and a short discussion. Then, in the next section, a general discussion 
picks up the interesting results and connects them with results from other 
studies. 

Experiment I :  Active Intervention vs. Pure Observation 
Independent and dependent variables. In this first experiment (for more 
details see Funke & Miiller, 1988) learning by active interventions was 
compared to learning by pure observation of the system’s development 
(Factor 1: intervention vs. observation, I vs. 0). This factor points to the 
question if active regulation is really a necessary precondition for knowledge 
acquisition about dynamic systems. If there is reason for the assumption of 
different modes of learning (e.g., Berry & Broadbent, 1984, 1987), then 
different results for knowledge and performance have to be expected under the 
two treatments. In addition to the activity factor, the effect of a diagnostic tool 
(subjects had to predict the system’s next state) was compared to a no- 
prediction condition (Factor 2: prediction vs. no prediction, P vs. NP). The 
reason for this selection was to test the hypothesis if the diagnostic questions 
show interference with the task or if this additional prediction request leads 
to a deeper understanding of the system’s structure. The amount of 
verbalizable system knowledge subjects had acquired (QSI, as measured by 
the “causal diagram” at the end of exploration) and the control quality (QSC, 
as measured via the distance of the actual to the specified goal states) served 
as dependent variables. 
Subjects, material, and procedure. Subjects were 32 college students from 
Bonn University who participated in fulfillment of course requirements. Both 
factors with two levels each were crossed completely yielding four different 
experimental groups. In each of the four conditions eight subjects were run 
individually. This allows for detection of “large effects” (f=O.40, according to 
Cohen, 1977) with a d . 1 0  and pd .30  for main effects. In the I- and 0- 
condition the method of experimental twins was used: Each subject in the 0- 
condition observed exactly that system data which another subject (the twin) 
under the I-condition had produced (yoked-control design). So there was no 
difference with respect to the self generated or observed information about the 
system between the I- and 0-conditions. 
The microworld used was SINUS with parameters a=l, b=O, c=0.2, and d d . 9  
in Eq. (2), (3), and (4). The system had to be manipulated during five blocks 
of seven trials each. During the first four blocks subjects could freely explore 
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the system. During the fifth block all subjects (both the I- and the 0-group) 
were to reach and maintain a previously specified goal state. 
Results. It was expected that the I-group should be superior to the “observers” 
with regard to amount of knowledge as well as to control quality. Also, the 
“predictors” should accumulate more knowledge than the “non-predictors”. 
Path-analytical evaluation of the data supported these expectations only 
partially: The I-group was indeed better in controlling the system (significant 
standardized path coefficient pa.42, p I 0.10 from I to QSC), but seemed to 
know less than the “observers” (p=-0.30, p 50.10 from I to QSI). “Predictors” 
acquired more verbalizable knowledge than “non-predictors”(mean QSI: 1.02 
vs. 0.57, F(1.28)=5.50, p IO.10). Knowledge about the system was generally a 
good predictor of control performance (pd.41, p I 0.10 from QSI to QSC). 
Interestingly, there was a negative relationship between the time spent on the 
task and the quality of performance. 
Discussion. The results demonstrate the effectiveness of both task 
manipulations. Active interventions allow for better system control. However, 
this effect is not accompanied by an increase in “externalizable” knowledge. 
Similar dissociations have been reported by Broadbent, FitzGerald, and 
Broadbent (1986), Berry and Broadbent (1984, 1987), and Putz-Osterloh 
(1987), for a critique see Sanderson (1989). Concerning the second factor, 
requiring subjects to predict the next state increases the amount of knowledge 
as revealed by QSI. Detailed analyses of the so-called “experimental twins” 
- pairs of subjects who had to cope with the same system situations either 
actively or passively - indicated a high interindividual variability: there were 
no significant correlations between the twins’ QSI and QSC scores, thus 
showing the importance of person-specific ways of information processing. 

Experiment 2: Eflects of Eigendynamik 
Independent and dependent variables. In this second experiment the effect of 
different degrees of “Eigendynamik” was analyzed. Eigendynamik means that 
an endogenous variable at time t has an effect on its own state at time t+l 
independent of exogenous influences which might add to the effect. These 
autonomous system changes represent a central feature of dynamic systems 
compared to static ones, where changes can occur only due to active 
interventions of an operator. In dynamic tasks, Eigendynamik implies the 
existence of forces which are independent from the operator and which have 
to foreseen with respect to future goal values of the system. Eigendynamik 
requires from the operator to cope with temporal developments, either 
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increasing or decreasing the values of state variables, thus producing the 
necessity to think about the system’s next states not only in terms of the 
planned interventions, but also in terms of the system’s activity itself. 
Eigendynamik can easily be detected in situations where the operator does not 
make interventions; but such situations seldom occur because people think 
erroneously that they only learn about a system by actively influencing it 
instead, of looking at its behavior without disturbances. In case of exogenous 
control activities, the separation of endogenous Eigendynamik from 
exogenous interventions becomes much harder. 
To realize different degrees of “Eigendynamik” within system SINUS, 
parameters a and d from Fig. 1 and Eq. (2) to (4) were changed in three steps: 
a=l, d=l: a control condition without any Eigendynamik (Condition 0); a=l, 
dd.9: one variable with Eigendynamik (Condition 1); a=l.l, d=O.9: two 
variables with Eigendynamik (Condition 2). Parameters b=O and c d . 2  were 
held constant. Dependent variables were QSC for control performance and 
QSI for verbalizable knowledge. 
Subjects, material, andprocedure. A total of 24 paid males doing their civil 
service served as subjects. Under each of the three conditions eight subjects 
were run individually. Assuming a=O.10 and “large effects” (f=O.40), the 
power 1-0 proves to be at 0.50 in this case for the main effect (Cohen, 1977). 
SINUS was used to simulate the system with the characteristics described 
above. The system had to be manipulated during five blocks of seven trials 
each. During the first four blocks subjects could freely explore the system. 
During the fifth block all subjects were to reach and maintain a previously 
specified goal state. 
Results. It was expected that with an increase in Eigendynamik the amount of 
acquired knowledge as well as the degree of control over the system should 
deteriorate. Analysis of variance revealed only a significant effect for QSC 
(F(2.21,=3.23, p 50.10; mean QSC for Eigendynamik of 0, 1, and 2 are 3.86, 
3.70, and 5.18), but not for QSI (F(221~1.12, n.s.). Thus, increasing Eigen- 
dynamik leads to a less good control of the system variables, but the causal 
dependencies are equally well detected under all three conditions (but see the 
restrictions of this interpretation because of medium power). 
Discussion. Eigendynamik has been previously reported to have an important 
effect on the operators’ behavior (see de Keyser, 1990). The results of the 
present study show that the degree of knowledge acquisition does not seem to 
be influenced by Eigendynamik. In contrast, the control of the system varied 
as a function of Eigendynamik. Particularly under the condition of two 
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variables with Eigendynamik control of the system turned out to be much 
harder. This points to the fact that knowledge acquisition and knowledge 
application require different abilities, which under certain circumstances lead 
to a dissociation of both measures. 

Experiment 3: Identijication of Side Efects 
Independent and dependent variables. In this third experiment, the effect of 
three different degrees of side effects was analyzed. Side effects play a major 
role in the complexity of system identification and control because in most 
cases the side effects cannot be observed directly, but only via other 
indicators. At the same time, side effects have -by definition- smaller effects 
on the system variables than the strong main effects, thus making it more 
difficult to detect their existence and their subtle influences on the other 
system variables. 
Side effects were operationalized as minor effects from one endogenous 
variable on to another. In this case, parameters a and d from Fig. 1 and Eq. (2) 
to (4) remained unchanged (1 resp. 0.9), but parameters b and c were changed 
in three steps: b d ,  c d :  a control condition without side effects (Condition 
0); b d ,  cd .2 :  one side effect (Condition 1); bd.5,  cS.2: two side effects 
(Condition 2). Dependent variables were again QSC as a measure for control 
performance and QSI as indicator for acquired and verbalizable knowledge. 
Subjects, material, and procedure. Under each of the three conditions eight 
male subjects (Bonn University students) were run individually. According to 
Cohen (1977), assuming ad.10 and “large effects” (f4.40) power 1-p 
proves to be 0.47 for the main effect. The system used was again SINUS with 
the changes described above and with the following change of the procedure: 
During the first four blocks exploration was not limited by number of trialbut 
by time (15 min per block). During the fifth block all subjects were required 
to reach and maintain the previously specified goal states over seven trials 
without time pressure. 
Results. The expected influence of side effects on knowledge acquisition was 
confirmed by a significant negative path coefficient (p=-0.35, p SO. 10) from 
the side effect predictor to QSI (mean QSI for 0, 1, and 2 side effects are 1.14, 
1.26, and 0.77, F(2,21~1.74, n.s., respectively; see Fig. 3). Also, the effect from 
knowledge onto control quality reached significance (p=0.73, p 50.10 from 
QSI to QSC; mean QSC for 0, 1, and 2 side effects are 2.39,2.86, and 4.72, 
FCr2,,=4.O1, p 50.10, respectively; see Fig. 3). The number of trials in blocks 
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1 to 4 had (contrary to our expectation) no predictive value for QSC or QSI, 
but this conclusion is taken only as preliminary because of medium power. 

Number of Side Effects 

Figure 3 Number of Side Effects and its influence on the verbalizable knowledge 
(QSI; larger values indicating more knowledge) and control performance 
(QSC; larger values indicating less control). 

Discussion. As in the two previous experiments, the manipulation of another 
system attribute shows an effect on knowledge acquisition as revealed by the 
QSI measure and, again, the amount of knowledge predicts the quality of 
system control QSC. This result is in line with Conant and Ashby (1970) 
according to which good control has to be the consequence of a good model. 

Discussion 

This section deals first with a summarizing discussion of the experimental 
results. The second part is concerned with a discussion of the DYNAMIS 
approach as a general approach to study complex problem solving. 
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Discussion of Experimental Results 
The three experiments described above have something in common: they all 
demonstrate the differential effects of subtle changes in system attributes and 
task requirements on the dependent variables: 

(1) 

(2) 

(3) 
(4) 

( 5 )  

Active intervention leads to a better control performance, but 
verbalizable knowledge decreases (Exp. 1). 
To let subjects predict the next system state increases their amount 
of verbalizable knowledge (Exp. 1). 
Knowledge predicts performance (Exp. 1,3). 
Growing Eigendynamik deteriorates control performance but not 
the available knowledge (Exp. 2). 

Growing side effects reduce control performance and available 
knowledge (Exp. 3). 

Thus, comparing side effects with Eigendynamik as two important variables 
contributing to the complexity of systems it shows up that Eigendynamik can 
be more easily detected, but less easily controlled. In the case of side effects 
the situation is more complicated: subjects are not able to detect the cause of 
changes in the system variables correctly and, thus, have little chance of good 
control. As Muller (1993) points out, these problems in the identification of 
system structure lead to a phenomenon called “compensatory assumptions”. 
According to this hypothesis, subjects try to build up a model which explains 
the available system data by means of incorrect models; the incorrectness 
comes from simple, but wrong causal paths which compensate for the right, 
but complicated ones. In his data analysis, Miiller (1993) could demonstrate 
that subjects either have the right model about the implemented side effects 
(which seldom occurs) or have a certain simple wrong model which explains 
the system changes with compensatory assumptions. 
Even if subjects would not detect different degrees of side effects or 
Eigendynamik - an argument used recently by Strohschneider (1991) in a 
critique of the presented experimental approach - the effects of this 
manipulation on the dependent measures cannot be denied. Also, the result of 
Brehmer (1989; Brehmer & Allard, 1991) point to the critical role of system 
characteristics. In their studies, introducing different degrees of feedback 
delay leads to a detrimental problem solving behavior (see also Funke, 1985; 
Sterman, 1989). 
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Discussion of D Y N M I S  approach 
Besides the results of the above reported experiments, there are some general 
features of the Bonn approach to complex problem solving worth discussing. 
The main progress made in the three years of the DYNAMIS project can be 
summarized as follows: 

It was possible to develop and run an experimentally oriented 
research methodology in the area of complex problem solving. 
This guarantees causal interpretation of the reported effects. 
A formal framework exists for the description and construction of 
arbitrary dynamic systems with continuous variables. This 
guarantees comparability between studies with different systems 
(as done in Exp. 1,2, and 3). 
Measures for quality of system control and quality of system 
identification have been derived which show acceptable 
psychometric quality. This guarantees i n  combination with 
acceptable power of statistical tests- that the non-appearance of 
certain effects cannot be attributed to unreliable measures. 
The effects of subtle changes in system attributes and task 
demands have been demonstrated experimentally with respect to 
their consequences for identification and control. 
A first step towards a taxonomy of influence factors in dealing 
with dynamic systems has been made as an attempt to integrate 
the results (for more details see Funke, 1990). 

Until now, there has not been impressive theoretical progress in this research 
domain. But the instruments for doing research and a corresponding 
framework have been developed which seem to be the basis for theoretical 
work. As often occurs in the development of science, the preparation of 
analytical tools was a necessary step for further insights (for example, even 
the traditional theory of finite state automata could be a useful and new tool 
for problem solving research, see Buchner & Funke, 1993; Funke & Buchner, 
1992). This step has been done. 
Concerning the general research strategy, it seems more useful to manipulate 
critical variables in system structures and in presentation modes than to create 
numerous of new systems which are completely unrelated and offer no solid 
basis for comparisons. Also, replications of reported effects are quite 
necessary -this requirement also applies to the experiments reported here. 
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Collecting data without theoretical assumptions produces puzzling situations 
in which spurious correlations may suggest significant effects where no effects 
are present. Only the strategy of analyzing the effects of selected variations 
based on some minimal theoretical premises - the experimental method -can 
offer new insights into the principles and mechanisms that govern complex 
human problem solving. For this purpose, the research strategy outlined above 
offers a method for the systematic construction and variation of stimulus 
material with well known characteristics which can used in future 
experiments. 
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