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The purpose of this paper is twofold: (1) We wish to introduce human
interaction with finite-state automata as a new research paradigm for
studying processes of knowledge acquisition and knowledge application in
dynamic task environments. (2) In order to illustrate the approach, a study
will be reported in which finite-state automata were used as dynamic rask
environments. The study aimed al investigating the usefulness of an
external memory aid in exploring and controlling a device,

Using computer-simulated scenarios in problem-solving research has be-
come increasingly popular during the last decade (e.g. Berry & Broadbent,
19684, 1987, 1985, Brehmer, 1987; Broadbent, Fitzgerald, & Broadbent,
1989; Domer, 1987; Funke, 1988, 1991; Hayes & Broadbent, 1988; Hoc,
1989; Hunt & Rouse, 1981; Jeffries, Polson. & Rasran, 1977; Moray.
Lootsteen, & Pajak, 1986; Morns & Rouse, 1985; Plotzner, Spada,
Stumpf, & Opwis, 1990; Putz-Osterloh & Lemme, 1987; Sanderson, 1989).
This approach to problem solving seems attractive for several reasons. In
contrast to static problems, computer-simulated scenarios provide the
unique opportunity to study human problem-solving behaviour when the
task environment changes concurrently. Subjects can manipulate a specific
scenario via 8 mimber of input variables (their number typically ranging
from 2 to 20, and in some exceptional instances up to 2000), and they
observe the system’s state changes in a number of output variables. In
exploring and/or controlling a system, subjects have to acquire con-
tinuously and use knowledge about the internal structure of the system.

Computer-simulated ‘‘microworlds"” seem to possess what is called “'eco-
logical validity”. Simulations of (simplified) industrial production (e.g.
Moray et al., 1986), medical systems (e.g. Broadbent, Berry, & Gardner,
1990), or political processes (e.g. Dérner, 1987) have the appeal of bringing
“real-world tasks" to the Taboratory. This has stimulated the use of a great
diversity of dynamic systems as experimental task environments, each of
which is designed to relate to a different aspect of “reality”. The problem,
however, is that such vastly different experimental tasks, and, hence, the
results of experiments using these tasks, are very difficult to compare. In
particular, it becomes unclear as to whether one should attribute experi-
mental findings to the experimenter’s manipulation or, rather, to the
peculiarities of the task employed. Most systems differ not omly with
respect to surface features (i.c. the semantics implied by the labelling of
their input and output variables), which we know to have strong influences
on problem-solving behaviour in both static tasks (e.g. Kotovsky &
Faliside, 1989; Novick, 1988; Wagenaar, Keren, & Lichtenstein, 1988) and
dynamic ones (e.g. Hesse, 1982; Putz-Osterioh, 1990). Equally important,
for most systems it is unclear how one should compare them with respect
to the underlying formal structure.

There are two possible solutions to the latter problem. One possibility
is to define a set of formal dynamic system characteristics and use this set
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for systematically comparing the tasks used in various experiments (e.g.
Funke, 1990). Such an analysis will at least give a rough idea of whether
or nol two dynamic tasks could yield comparable results. The other poss-
ibility 15 to denve different dynamic task environments from the same
formal background. The formal homogeneity of different task environ-
ments facilitates comparisons between experiments and increases the
chances of discovering effects that are not only “local™.

The theoretical framework we refer 1o is the cybernetic theory of finite-
state automata (cf. Ashby, 1956; Hopcroft & Ullmann, 1979; Roberts,
1976; Salomaa, 1985). We wish to show that, from the perspective of
cognitive psychology, the paradigm of investigating human interaction with
finite-state automata has several interesting aspects. These are mentioned
here and discussed in greater detail further on. (1) The theory of finite-state
automata may serve as a basis for constructing classes of formally well-
described dynamic task environments. As a consequence, it becomes pos-
sible to construct different problems that may share well-known
and differ with respect to a critical feature, (2) The formal description of
finite-state automata suggests inferesting assumptions about plausible
cognilive processes and forms of mental representation necessary 1o control
a discrete dynamic system effectively. (3) The same formalism suggests
appropriate and systematic diagnostic procedures that closely correspond
to the assumptions about mental representation. (4) Using finite-state auto-
mata, one does not have 10 give up the “ecological validity” appeal of more
conventional dynamic task environments.

Formal Background

Finite-state automata theory is a well-claborated framework in the area of
computer science. Here, however, we make use only of the framework’s
most elementary concepts. Within finite-state automata theory, any system
can be defined and exhaustively described by a transformation function
that specifies the state transitions given a specific state of the system. In
this paper we focus on deterministic astomata. A deterministic finite-state
automaton is defined by three sets and two functions:

. & finite set X of input signals (the input alphabet);

. a finite set ¥ of output signals (the output alphabet);

a finite set § of states;

. @ transition function 3, which is a mapping of § x X on § and which
determines the next state of the system as a consequence of the input
signal;

5. a result function A, which is @ mapping of § x X on Y and which

determines the output signal of the system as a consequence of the input

signal.

e
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The automaton A = [X, ¥, §, 8, A] is called a deterministic Mealy-auto-
maton (see Figure 1). To make things more concrete, the input alphabet
of an arbitrary technical device ¢onsists of the button and switch positions
that can be selected as input at a certain point in time. The output alphabet
contains all possible display settings. It is assumed in the above definition
that the system works on the basis of a discrete time scale, At each point
in time, the system is in a certain state in which it receives exactly one
input signal (e.g. on a VCR, the “fast forward” button is pressed). The
system then moves to the nexr stare, which is determined by the transition
function 8 (e.g. the VCR starts to wind the video tape). Subsequently, the
device emits exactly one output signal, which is determined by the result
function A as a consequence of the current state and the input signal (e.g.
the “fast forward” arrows on the VCR’s front display are highlighted).
Note that in this general version the output signal is informative about
both the pext system state and the input signal (and, hence, about the
previous system state). To illustrate this with another example, an error
message of a computer program typically contains information about both
the present state and the previous state. Thus, the same state s € S (e.g.
a fatal system error) may be associated with a number of different output
signals y & Y (e.g. error messages), depending on what preceded the trans-
ition 1o that state.

An automaton in which the output signal y « ¥ depends only on the
new state 5 « § as determined by 8(s, x) (i.e. y is not a direct function of
the input signal x € X)) is called a deterministic Moore awiomaion. In this
case @ marker function w exists, which is a mapping of 5 on ¥, replacing
the result function A. In other words, the output signal contams information
onlv about the state of the system following the intervention (e.g. that a
system error has occurred), and not how one got there (e.g. which type
ol error caused the computer to crash), Numbers displayed on a pocket
calculator may also serve as everyday examples for this situation. The digits
in the calculator’s display do not unambiguously inform us about the cal-
culator's previous state and the last input. Thus, in a Moore automaton,
an outpul signal i less informative, because it only reflects the current
state of the system, This is an important system characteristic to keep in
mind in constructing dynamic task environments. Naturally, in any realistic
automaton both forms of output signals may coexist. Figure 1 illustrates
in the simplest possible case the formal difference between Moore and
Mealy types of automata.

Two convenient ways of describing finite-state automata are used; state
transition matrices and directed graphs. Each possible description of finite-
state automata puts a different emphasis on certain aspects of system
behaviour. Knowing about these differences is helpful in constructing
dynamic task environments, A state transition malrix contains in its cells
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FIG. 1. Directed graphs and state transition matrices illustrating (a) & Mesly and (b) &
Moore automaton. $1 end 52 represent the two states of the automaton, IT and I2 represent
the mput signals, amd lower-case letters represent the cutput signals.

the automaton’s state at 1ime ¢ + 1 {§,,,, the next state), given a specific
state at time I (S, the current state) and a specific input signal at me 1
(1., the user intervention). In each column it contains the “function” of an
input signal, and the rows reflect possible next states given a certaim current
state.

Figure 1 also shows that every deterministic automaton may be un-
ambiguously described by a directed graph D with D = (V, OPE), where
V is a set of vertices (states, nodes) and OPE is a set of ordered pairs of
elements of V called arcs (state transitions, edges). For small automata,
directed graphs are a particularly useful tool for visualizing the automata’s
functional characteristics,’

Another form of describing the characteristics of a finite-state auto-
maton (not illustrated in Figure 1) is a ree. A tree is an ordered graph
consisting of a “source” mode from which hierarchical “branches” to
successor nodes originate. The source node represents the initial state of
the system. Successor nodes are all states that can possibly be reached
from the current node by any of the available interventions. The “leaves™
associated with the branches represent the output signals of the system

'In sddition, graph theory provides certain (descriptive) concepts for characterising finiee-
state automata, such as different forms of connectedness o1 arc-vulnerability. Roaghly, for
imitance. arc-vulnerability describes the degree t0 which there exist alternative sers of state
transitions that may be used if one set of ransitions is no longer svailable 10 pet = system
from a specific state 5, 1 another specific state S, This may happen. for instance, due to
a system failure or because of forgetting on the side of the user. The smaller the number of
alternatives, the more vulnershie the system is refative 10 the 5,5, transition (for further
details, see Roberts, 1976)
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associated with the state transitions. There are as many levels of branches
as there are interventions to be considered. Thus, the branches of the tree
reflect the accumulated state transitions of the system. One reason for
using trees 16 visualize the structure of an automaton may be to illustrate
quickly the decisions a person has to face in interacting with the system.

The cases considered so far involve only user-generated state transitions.
However, state transitions may also occur autonomously {i.e. not caused
by direct user inlerventions). Aifonomens fransitions occur as a function
of discrete time intervals. As an everday example of such ime-dependent
transitions, consider an automatic ticket vendor that ejects the inserted
money if no user input occurs within a certain lme interval. In order to
represent time-dependent transitons, one can simply add a separate
column to the transition matnx analogous to & new input signal. This new
column contains for each state as paramoters not only the next system state
§,., but also the length of the time interval after which the specified state
transition will occur (unless, of course, the user selected a different inter-
vention before the end of the time interval).

Transparency as an importanl system characteristic depends on the
nature and the number of latent states implemented in a system, A state
is said to be latent if, for instance, & state transition to this state resalts in
an output signal identical to the signal of the preceding transition. A ticket
vendor that does not emit information about how much money has been
inserted can serve as a simple example. After each coin inserted, the system
state changes, but the output signal stays constant. Roughly speaking, the
larger the number of different states that share the same output signal, the
less transparent the system will appear to the person trying to interact with
it.

Attractive Features of the Discrete Systems
Paradigm

The paradigm of human interaction with finite-state automats has a
number of artractive features for studying processes of knowledge acquisi-
tion and knowledge application in dynamic task environments. These fea-
tures, which have already been mentioned, are described here in greater
detail,

1. Constructing Classes of Well-described Dynamic Task Environ-
ments, This is an important aspect. as manipulating the properties of task
environments seems essential for experimental cognitive psychology. Yet
in the area of problem-solving research this aspect has often been neg-
lected. Instead, what we find is a collection of simulated scenarios, most
of which have been constructed to “mimic™ some aspect of reality more
or less adequately. These scenarios—and, hence, the results of experiments

FINITE-STATE AUTOMATA AS DYNAMIC TASK ENVIRONMENTS 89

employing them—can hardly be compared, and it is difficult to mampulate
isolated properties of unsystematically constructed “realistic” scenarios
(see c.g. Brehmer, Leplat, & Rasmussen, 1991). One reason for this deficit
is that the appropriate formal criteria are not readily available.

Systematically varying and controlling the properties of 1ask environ-
ments helps to detect effects that are unique to a specific task, and it may,
at the same nume, serve 10 estimate the impact of these properties on
processes of knowledge acquisition and application. Within the theory of
finite-stale automata the tools are available for exhaustively describing
different discrete dynamic systems on the basis of the same formalism.
This tacilitates both system comparisons and systematic varialions of single
task properties. A concrete example may be system complexity, System
complexity is determined by the number of states a device can be in, and
by the number of interventions with different consequences possible for a
given system state. The number of different interventions corresponds to
the number of potential user decisions given that state. For each state, the
number of different interventions may vary between | (a “trivial™ case in
which all input signals have the same consequence) and the number of
input signals available (cach input signal has a different consequence),
McCabe (1976), for instance, has introduced a complexity measure that
takes into account these parameters that together define the decisional
structure inherent in a system. This complexity measure may be used to
charactenize the overall complexity of automata, Considering the graphical
representation G of a finite-state automaton with » siates, ¢ edges, and p
connected components, complexity C is defined as

OG)=e-n+2+p

As p is different from 1 only for hierarchically nested automata (a case
that is irrelevant for our present purpose), we can say that for the extremely
simple example in Figure | we find ¢ = 4 edges and n = 2 states, resulting
in C=4-2+ 2+ 1= 4. This figure may then be used ro make ordinal
comparisons between different automata.” McCabe’s measure is applied
to the automata used in our experiments.

Of course, experimental research using dynamic task environments must
not exhaustively focus on the variation of formal properties of task environ-
ments. However, formal properties may serve as a first basis for inter-
preting psychologically interesting effects (such as differences in the
amount of knowledge acquired) and as a stimulant for interesting experi-

*C takes on & minimal value of 1 for autonmta in which all interventions that are possible
81 2 given state lead to the same next stste. The graph of such sutomata takes on the farm
of a chain, leading in & siraight fine from the initial siate via all Intermediate states o the
terminal state. Hence, the number of stales n surpasses the number of edges ¢ by exactly 1,
thus C = (0 — 1) =n+2= |,
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ments, particularly if subjects’ performance deviates from what would be
expected on formal grounds.

2 Plausible Cognitive Processes and Forms of Mental Representarion.
The formal descriptions of automata also provide a basis for selecting
plausible psychological hypotheses about their mental representation and
about processes of knowledge acquisition. The user’s knowledge sbout a
system can be described i terms of those parts of the transition matrix
that are represented in memory and available for guiding system inter-
ventiops. We call this the person’s “individual transition matrix™ (TTM).
The person’s ITM may. of course, deviate from the automaton’s transition
matrix because it is incomplete or because it contains incorrect transitions.

if 2 person is confronted with a previously unknown sutomaton and
begins ta explore this device, learning about the functioning of it must
begin st the level of individual state transitions composed of a previous
state, an intervention, and @ next state. A person’s experiences of these
transitions while explonng the automaton constitute the “entries’ for the
ITM, At that level. the signals belonging to different states, interventions,
and pelt states must become associated. Figure 2 illustrates the necessary
associations between the basic components of individual state transitions.
(1) We assume that 3 system state becomes associated 1o a specific inter-
vention (F;) as a consequence of the feedback provided by the subsequent
state of the system, Such an association could be the leaming to press a
stop switch in an emergency situation. (2) The intervention itself may be
associated with a specific subsequent system state (F;). Pressing the off-
switch of a device, for instance, will be strongly related to the subsequent
terminal state, (3) States may be directly associated to subseguent statey
(F3), particularly if there is only a limited choice of possible interventions,
if the choice of an intervention does not matter to the state transition, or
if the tjansition occurs autonomously (i.e. as a function of a discrete time

Ficg 2 Forward (F) and backward (B) associanions between basic components of siate
e i
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interval without an explicit user intervention). (4) We need to consider
associations of subsequent interventions as a component association that
should be important when output signals of the system are not attended
(Fy). Following manual or cookbook insiructions may seTve as a proto-
typical example in this context.

In anzlogy to paired associate learning findings (cf. Martin, 1965) we
may expect both forward and backward associations to be formed (the
latter are referred to as 8, to B, in Figure 2). However, forward associ-
ations should be dominant, as free exploration of an automaton results in
a more serial learning type of experience. In contrast, paired associate
learning expeniments that find strong backward associations typically ran-
domize the order of presentation of the pairs of stimuli from trial to tnal,
thus prevemung serial learning from playing an important role (e.g.
Harcum, 1953; Murdock, 1956, 1958; Richardson, 1960).

Of course, combinations of component associations will be relevant
depending on the situation. For instance, associations F; and F; are
relevant for predicting the next system state given the present state and
an inmervention. In making such a prediction, the current state and a
specified intervention may be combined in short-term memory to form a
“compound cue" (Gillund & Shiffrin, 1984) to retrieve the next state of
the system.

Later on in the process of leaming, people may no longer primanily use
knowledge about individual state transitions to control & device. Instead,
they will cluster individual state transitions into more abstract concepts
according 1o, for instance, the statistical properties of the elements of the
state transitions (e.g. co-occurrence of a subset of output signals with a
specific subset of input signals) in order to reduce memory load.

We can distinguish two different ways of organizing clusters of state
transitions. {1) “Routines” may be developed to get a system relizbly from
one state to a distant state. This can be referred o as the formation of
“hortzontal chunks” of state transitions. For example, the stale transition
sequence S~1-S,.-f,,—3,,1,,~8,,; may be reduced to the form S/~
L., \-1,.:}-5,, « where the interventions necessary to get from state §,t0 §,.;
form one single component of a compound state transition and the user
no longer peeds 1o attend to the intermediate output signals (e.g.
Anderson, 1982; Frensch, 1991, MacKay, 1982; Newell & Rosenbioom,
1981). (2) State transitions can be combined across a specific intervention
or a specific state, given the intervention or the state can be identified as
the source of a specific form of invariance. This process can be referred
to as the formation of “vertical chunks™ of state transitions. An example
could be an intervention to change the mode of operation of a device (in
the most simple case this is an “on/off™ switch).

The concepts induced from the experience of individual state transitions
are necessarily more abstract in that they no longer correspond to one
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single specific physical event in the automaton. For instance, concepts like
copying, cutting, deleting, and mserting text in a word processor may be
grouped as editing functions. In a new dynamic task environment, how-
ever, leaming-by-exploration will start at the level of individual state tran-
sitions, and it seems necessary to understand the process of learming at the
level of state transitions before proceeding to a higher level of knowledge
orgamzation,

3. Diagnostic Procedures. A frequent practice in problem-solving
research is to use specifically designed questionnaires or performance
measures that are directly derived from the task at hand, such as the
“production output™ in an economic scenario. The problem with these
idinsyncratic measures is twofold. (1) Again, it is difficult if not impossible
to compare such measures if they stem from different tasks and use system
parameters as performance criteria. (2) They have no clear relation 1o
“classical™ measures of memory, and hence we renounce a considerable
body of information accumulated about these latter measures (e.g. Posner,
1978).

The formalism taken from the theory of finite-state automata provides
tools for developing adequate and systematic diagnostic procedures. We
can assume that a person’s experiences of state transitions while expioring
an automaton constitute the “entnes” for the ITM. State transitions, in
turn, consist of a given system state at time ¢ (5,), an intervention at time
t (1), and a next system state at time t+1 (S,.,). A straightforward way to
assess users’ representations about a discrete dynamic system, then, is to
confront them with two elements of this triple and ask for the missing
element. This results in three basic types of questions that can be asked
to investigate a given state of knowledge:

\. Prognostic question: Given state §, and intervention [, what new state
5.1 will result?

2. Interpolation guestion:  Given state §, and state §,, , what intervention
I, does produce this state transition?

3. Rerrognostic question: Given an intervention [, and a resulting state
Si+1, what was the previous state §,7

With these questions it is possible to take “samples™ from the ITM. For
deterministic discrete systems the answer to Question | always has only
one correct solution. For Questions 2 and 3, however, the actual answer
may be taken from a set of correct items, depending on the specific char-
acteristics of the automaton. The questions may be presented in analogy
to classical direct measures of memory, either in a cued recall situation
(the person must recall the missing element) or in a recognition procedure
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{the person must select the missing element from a list of alternatives).
Also, we have been successful at using variants of these questions that
constitute mdirect measures of system knowledge in that they do noi
require an explicit recollection of the prior learning episode (Buchner.
1993).

In addition to presenting only two out of three elements, one can also
expose subjects to entire stale transitions that are either possible or impos-
sible for a given device and ask for a response indicating the correctness
of the transition. This is similar 10 a classical verification task, and both
reaction time and error rates provide well-known dependent measures.

A umigue feature of dynamic systems Lasks is that “control performance™
provides an additional access to a person's knowledge about a system. For
evaluating these performance data and for making performance com-
parisons between subjects it is essential to have a criterion for optimal
performance. This criterion is directly available within the finite-state auto-
mata approach. Given a present state of a discrete system and an arbitrarily
defined poal state, it is always possible 1o specify whether there exisis a
sequence of interventions to reach the goal state and, if so. how many and
what steps constitute an optimal sequence of interventions {i.e. a sequence
invalving a minimal number of steps),

The finite state automata formalism also suggests other performance
measures. For instance, subjects’ exploration behaviour (i.e. the way they
approach the knowledge acquisition task) may itself be an interesting basis
for additional dependent variables. A readily available indicator of ex-
ploration behaviour is the number of different state transitions explored
relative to all states in the state transition matrix of the system. One can
assume that under difficult leamning conditions subjects restrict their
exploratory activities 1o 4 smaller number of transitions to build up firm
knowledge about the device.

4. Ecologreal Validity. Finally, we want to point out that many tech-
nical systems we deal with in everyday life are adequately described within
the formalism provided by finite-state automata theory, Examples include
computer programs, TV sets, programmable VCRs, digital wrist watches,
banking machines, and so on (see also the examples given by Weir, 1991),
In addition, consider some highly formalized way of social interaction. For
instance, everyday experience with administrative processes is that bureau-
cratic institutions accept only a finite set of input signals, take on a finite
set of states, and emit & finite set of output signals, Thus, in drawing upon
a well-developed formalism for constructing dynamic lask environmenis,
one does not automatically lose the appeal of “ecological validity” that is
often demanded of psychological research.
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AN ILLUSTRATIVE EXPERIMENT
ON THE EFFECTS OF EXTERNAL MEMORY AIDS

To illustrate the approach outlined above, we briefly present an experiment
that used finite state automata as dynamic task environments to investigate
the utility of an external memory for learning about a system.

Three groups of subjects performed successively on two different
unknown automats, For each automaton, their task was the following:
subjects were instructed to explore each automaton on two subsequent
“'exploration phases™ and 1o find out how it worked by manipulating it.
One group performed without additional help. Subjects in each of the two
remaining groups could use one of two different versions of an external
memory. After both exploration phases, all subjects were confronted with
a recogmution task ("'prognostic questions”, see earlier discussion) to assess
their system knowledge, and with a verification task to test a representa-
tional hypothesis (see Iater discussion). Finally, in a third phase subjects
were asked to try to reach a specified goal state as often as possible during
a particular interval (“control phase™). Thereafter, subjects were again
confronted with the recogninon task and the verification task. The same
procedure was repeated with the second automaton.

Qur basic assumption is that learning about a new discrete dynamic
system starts at the level of individual state tramsitions (5-/-5..,
sequences). Later on in the course of learming these state transitions may
be combined into higher-order units (see earlier). However, as a pre-
requisite they have 1o be available in working memory to become integ-
rated. The present experiment was designed to test whether an external
memory that graphically displays past states and interventions would facil-
itate the mtegration process by expanding the amount of transitions that
can be made available to working memory, and whether the external
memory would reduce interference between the mdividually experienced
state transitions that share elements of the S-/-S,,, triple, thereby
changing subjects’ exploratory behaviour. An additional question was
whether the usefulness of the external memory would depend on the com-
plexity of the system with which subjects interacted.

Hypotheses

The major focus of the ¢éxperiment was on the utility of an external memory
aid as one way to support identification of the unknown system structure
Existing research in this field mostly focuses on conditions that encourage
people 10 use external memory aids spontaneously (e.g. Harris, 1980). For
the most part this seems 1o be a question of a person’s metacogmitive skills
and the available knowledge about the utility of an external memory aid
in a particular situation. At least adults seem to know fairly well when
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they should use which type of external memory aid (cf. Intons-Peterson &
Fournier, 1986).

In & novel automaton, leaming starts at the level of associating elements
of state transitions. Parbicularly at the beginning of the learning process,
these associations will still be fragmeatary. Also, normally there will be a
number of transitions that share elements of the §-1-§,., triple, An
attempt to retrieve a particular transition or 4 component thereof will
consequently be susceptible to interference from similar transitions. For
instance, given a current state 5, and a desired next state §,,,, an inter-
vention J, may be retrieved either because it is associated with the current
state bul not with next states different from S, | or because It 15 associated
with the desired next state §,., but not with the current state. As a con-
sequence, subjects may restrict therr exploratory activities o a smaller
number of transitions in an attempt to reduce this interference, I, in
contrast, the availability of an external memory aid serves to reduce the
interference, more different state transitions should be explored (Hypo-
thesis 1). As a consequence of a more extensive exploratory activity, more
will be learned about the structure of the automaton. Thus, subjects sup-
ported by an external memory should perform better both on the recogni-
tion task and on the control task (Hypothesis 2. If this is true, an external
memory that in addition to preserving past information enables users to
resume exploration at a part of the state transition matrix they already
know could further reduce the interference and facilitate a systematic
expansion of a person’s individual state transition matrix, thereby causing
an additional performance increase on the recognition task and on the
control task (Hypothesis 3).

The two automata used in this experiment differed greatly in complexity
as defined by formal system characteristics. Assuming that this formal
property influences the leaming rate, we postulate that performance should
be better on the small automaton than on the complex automaton (Hypo-
thesis 4). It was also of interest whether the utility of the external support
system was uniform for automata of different complexities. As the external
memaory displays an identical number of state transitions for both auto-
mata, the relative reduction of interference should be much lower for the
complex automaton. Considering the large difference in complexity
between the automata (see later discussion), we postulate that the perform-
ance differences specified by Hypotheses 1 and 2 will be present for the
small automaton but not for the complex automaton (Hypothesis 5).

‘A separate question concerns so-called “efficiency-divergency"’ effects.
Oesterreich (1981) has suggested that in complex choice situations subjects
prefer actions that imply more alternatives (more divergent actions) but
lead to a goal less efficiently, compared to actions that are more efficient
but less divergent. We wanted to see whether corresponding results could
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be found for dynamic task situations when subjects explore a device under
conditions of imperfect knowledge. They should then prefer to explore
and, consequently, acquire more knowledge about states that lead to the
goal state less quickly but with a smaller risk of running into a state that
is further away from the goal than the present state. In contrast. they
should know less about efficient but less divergent transitions ( Hypothesix
6).

Finally, it was mtended to test a representational hypothesis that follows
from the assumption about the serial learning character of associating state
transitions. For thal purpose, we introduced a verification task in which
subjects judged whether or not a given transition was paossible for the
automaton they explored. If the assumption holds, we would expect faster
verification times for the second of a pair of state transitions if the pair
corresponded to the natural sequence of transitions in the automaton. In
contrast, if the second item of the pair violated the normal sequentiality,
no priming benefit should occur (Hypothesis 7).

The Task

Two dynamic systems were constructed on the basis of the theory of
finite-state automata. They were displayed using MacFAUST." Mac-
FAUST provides a standard graphical user interface for many different
kinds of discrete systems (see Figure 3).

During the exploration and control phases, subjects interacted with an
automaton by clicking with the computer mouse into “input buttons" in
the display. A selected button turned grey. For example, on left side of
Figure 3, the combination “alpha, +,#" has been selected. For each inter-
vention, subjects selected exactly one button in each row of input buttons
and clicked “0K™ when they were satisfied with their choice, Changes of
selections were possible as long as “OX™ had not been clicked, and "OK"
was active only if one bution in each row had been selected. The results
of the intervention could then be observed in the “output fields™ (right
side of Figure 3) of the display, The input buttons were cleared, and
subjects could select their next input.

The two systems used in this experiment were designed Lo be com-
parable with respect to most features and yet to differ with respect to their
degree of complexity. Complexity is supposed to be a major factor
influencing the difficulty of the identification task and of the utility of the
external memory support, As a measure of complexity we employed

*MacFAUST (= Finite AUtomata Simulation Tool) runs on Apple Macintosh computers
and serves to create and experiment with finite state automata 8s dynamic task environments.
For a more detsiled description of MacFAUST see Buchner, Schmitt, Funke, and Nikelowsii
{1991} MacFAUST is gvailable wpon reqguest
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Input: Dutput:

Trial No. 2

b

FIG:. 3. Example user mierface display for the small stomaton. Left side: jnput buttons,
right side: output fields

McCabe's (1976) complexity index (see above). The small automaton has,
according to this measure, a complexity of 32 (¢ = 39 edges and n =9
states). The complex automaton's complexity is 260 (¢ = 304 edges and
n = 46 states), Thus, the automata differ considerably with respect 1o the
decisional complexity implied by their state transition matrices. The state
transition matrices for both automata are given in the Appendix (Tables
Al and A2).

Both automata operate like Moore automata. The cutput signals reflect
only the system states, and each state is associated with a unigue output
signal (i.e. there are no latent states), Each automaton has three rows of
input buttons. In each row, one button must be selected for the complete
input signal. Also, in both automata the output signal has three com-
ponents (see Figure 3 and Tables Al and A2 in the Appendix). In each
automaton, ane row of input buttons works similarly to an “on/off™ switch
(+/— and #/0 for the small and the complex automaton, respectively) in
that it controls whether or not inputs i the other rows have an effect on
the system in the sense that they produce a transition to a §,.; # 51 state,
where §1 is the mitial state. For instance, if a person selected ™" in the
second row of the small automaton’s input buttons, the following transition
always resulted in the initial state, regardless of the setting of the buttons
in the remaining rows. Another row of input variables worked like a
“mode™ switch (alpha/beta and amount/AAA). Depending on the current
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setting of this input button, the inputs in the third row have different
effects. For instance, if the small automaton is in its Initial state S1 and if
“alpha™ is selected in the first (and * +"" in the second) row of input buttons,
the effect of pressing “®e™ in the third row (I2) is that the automaton
moves to state 52, and'"B" is displayed in the bottom component of the
output signal_ If “beta” (I8) is selected instead of “alpha". the system stays
in state 51 and no change in the output signal occurs following that inter-
vention,

The exact way of how the sutomata worked is reflected in the state
transition matrices (see Tables Al and A2 in the Appendix). Roughly, the
small automaton may be described in analogy to a primitive ticket vendor.
The user first selects one of two types of cards (e.g. one selects card “B"
by pressing the combination “alpha,+ ®®" which leads to state 52), then
inserts money (e.g. by selecting “beta, + @###" which leads to state S6),
and finally tells the machine to eject the card (by selecting “*beta,+ ,sae8”
which leads to the goal state $8). To understand the complex automaton,
one may think of an automatic teller. The user sets the machine to display
a certain amount of money (by selecting several times # amoumt”, and
one of the appropriate buttons "'A" to "E"") and then types in one of three
permissible 3-letter code words to reach the goal (by selecting several times
"o, AAA", and one of the appropriate buttons “A'" to “E"). Alternatively,
the user may start to type in the code and then specify the amount of
maoney.

TI;: automata were completely unknown to subjects, and the labels of
the input and puiput signals were designed to be semantically poor so as
to make the task primarily one of structure identification. Subjects should
pot use any specific knowledge they might have had about a concrete
system to mfer the automata’s structures.

It has frequently been reported that, particularly for novices, surface
features are crucial for positive transfer between different tasks (e.g.
Gentner & Geotner, 1983; Novick, 1988; Schumacher & Gentner, 1988),
Therefore, surface features of the two systems were made dissimilar to
minimize possible transfer effects between systems. (1) The labels used for
the input and output variables and for their levels were changed from one
system to the other. (2) The spatial positions of the input buttons and the
output fields on the graphical display were different for both automata.

The External Memory

For two of the three expermmental groups, an external memory was
available during the exploration phase, Two different versions of the
external memory were implemented. Both versions graphically displayed
six past states at a time in a separate window, and the window automatically
appeared on the screen every six interventions, The display consisted of
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scaled-down copies of the original displays and showed the selected input
buttons, together with the following output signal. An example of the
emml_ai memory for the small automaton is presented in Figure 4. Subjects
!:uuld inspect all past transitions of the current exploration phase by clicking
into the numbered top row of the window, The state with the appropriate
ordinal pumber and its five predecessors were then displayed in the
memory window, Subjects clicked into the window's “close box” in the
top left corner when they wanted to continue to explore the automaton,
This “static” version of the external memory was presented to one group.
For am?thcr group the external memory additionally included the
“tliynamm“ option to make one of the old states displaved i the memory
w:ndnlw the next present state of the system and to continue system ex-
ploration at that state. To achieve this, subjects clicked info the part of
the window displaying the desired next state. They were then asked to
confirm their decision before the memory window was closed. The auto-
maton then displayed the desired next state as its current state from which

subjects could continue their exploration. The transition was counted like
a normal user intervention.

Knowledge Assessment

After md'; interval of 50 interventions, subjects were confronted with
a recognition test and a verification task. The recognition test consisted of
10:items, the verification task consisted of 20 items.

( ]
== Click here 1o concel

)

% S Ha. 1§

- o]
O @R [
| | : )

FIG. 4. Example display of the external memory for the small sutomaton. Al triahs huye
ordinal numbers, with that of the present trial being the highest. '

5 (=)
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Duning the recognition test the screen display was identical to the display
during the intervention tnials. except that the three output signal displays
were divided horizomally into two separate fields, one of which showed a
system state §, and the other part was empty. Also, three input buttons
were shaded grey to indicate an mtervention [, Subjects’ task was to con-
sider the state S, and the intervention [, and then to select from a list of
possible and an equal number of impossible cutput signals the appropriate
signal of the next state §,. | ("prognostic question”, see earlier discussion).
More specifically, for each possible output signal in one of the three com-
ponents there was one impossible alternative. Subjects selected the three
components by clicking into the output fields. Each click in one of the
ficlds brought up a different output signal component. Subjects clicked
“0OK™ when they thought the displayed components constituted the correct
output signal.

A complete list of the recognition items for both zutomata is given
Table A3 in the Appendix. The items did not represent a random sample
from the state lransition matrix but were selected 1o cover certain
interesting features of the automaton. For instance, Items 9 and 10 cover
inputs with a different efficiency-divergency characteristic (see Hypothesis
6). To (llustrate, consider the complex automaton in which two I3 inter-
ventions may replace seven Il interventions to reach state S35 from the
initial state S1. On the other side, for intervention I3 there is a higher risk
of ending up in State S12, from which the distance to the Goal State 545
is maximal {only resets to the mitial state are possible). Thus, as we expect
that subjects will prefer less efficient but also less “dangerous™ (more
divergent) interventions during their exploration trials, they should end up
knowing less about the efficient intervention covered by Item 10 in compar-
1son to the less efficient intervention covered by Item 9. We also expect
them to acquire less knowledge about the “mode” interaction (Items 3 and
4) than about the “on/off™ interaction (ltems 5 and 6).

In the verification 1ask the display was identical to that in the recognition
task, except that the blank parts of the output signal components showed
the components of a next system state 5,.,. In other words, a complete
§~1-S,., transition was displayed. Subjects judged as fast as possible by
pressing a “YES" or “NO" key on the keyboard whether a given state
transition was possible for the automaton they had explored. Half of the
items were correct transitions. These were automatically selected from the
subject’s prior intervention trials in pairs, such that for three of these pairs
the second item was a state transition that had occurred after the first item,
thus corresponding to the “natural™ seriality of system state transitions. In
contrast, two pairs of items were selected such that the second item was a
state transition that had occurred before the first item, thus confradicting
the normal seriality of state transitions.
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During the controf task subjects interacted with the automaton as during
the exploration phase, but this time the instruction was to use the shortest
possible sequence of interventions 1o reach the goal state (States S8 and
545 for the small and the complex automaton, respectively) as often as
possible within 50 mterventions. For the small automaton the optimal
sequence involves three, for the complex automaton it involves six inter-
ventions. Every time the goal state is reached, an additional transition is
used for the reset to the automaton’s initial state. The external memory
was not available during the control phase.

A final dependent measure was taken directly from subjects’ exploration
trials. It was counted how many different state rransitions subjects gencrated
while they attempted to learn how the automaton operated.

Method

Subjects. Subjects were 68 Bonn University students who either volun-
teered or participated to fulfil course requirements. They were aged 20 to
) years.

Design.  Subjects were randomly assigned to one of the three experi-
mental conditions, these being no memory (NM), static memory (SM),
and dynamic memory (DM). There were 23 subjects in Groups NM and
SM, and 22 subjects in Group DM. Because subjects performed on two
successive automata, one half within each group started with the complex
automaton, the other half started with the small automaton.

Procedure.  Subjects were tested individually. The instructions were
read to them in a standardized form and repeated on the computer. All
subjects received a printed version of the graphical display of the system
and a description of the course of the experiment. They were instructed
that they would be confronted with two unknown automata and that their
task was to |dentify how these automata operated. They were told that
each automsaton had one particular goal state and that if they would reach
this state, the automaton would present a brief signal indicating their
“success” and would then automatically reset itself to the initial state from
where they could then resume exploration. Subjects in the memory condi-
tions were informed about the external memory and instructed how to
handie the memory window. Subjects performed about 30 interventions
on an extremely simple “learning automaton” to become acquainted with
the use of the computer mouse.

Each subject then performed on two successive automata. For each
automaton they carried out two exploration phases and one control phase.
Each of the exploration phases and the control phase consisted of 50 imer-
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vention trials. During the two exploration phases, subjects’ task was to
learn how the automaton operated by manipulating it and observing the
state changes. For the memory conditions. the memory window was dis-
played automatically every six trials during the two exploration phases.

In contrast, during the control phase subjects were instructed (o try to
reach the goal state as often as possible. None of the groups received
external support while performing on this task.

After each exploration phase and after the control phase subjects per-
formed on the recognition task (10 items) and on the verification task (20
items). The order of presentation of single items was randomized for the
recognition task. For the verificarion task, the order of presentation of
pairs of items (presented in contradicting or comresponding sequence) was
randomized for each subject. After each recognition item, subjects were
asked 1o indicate the degree to which they felt their choice was appropriate,
on a scale from | (= guess) to 4 {= perfect confidence).

The same procedure was repeated with the second automnaton, except
that subjects were not specifically mstructed for the second automaton and
simply told that thewr wask and the procedure were the same as before but
that the automaton was different.

Results

A multivariate approach was used to analyse the repeated measures data
statistically (O'Brian & Kaiser, 1985). The Pillai-Bartlent-1 criterion,
known for its robustness, was chosen as the multivariale test statistic
(Olson, 1976). However, the F-approximation to the distribution of V is
used in describmg the results. For all analyses, the critical level of a and
B was set to (.05, which is sufficient 10 detect “large effects” given N = 23
in each of the three experimental groups. Also, for every significant effect
partial R%s (R?) will be reported as s measure of the proportion of vanance
explained relative to the total variance not explained by other experimental
variables (Cohen, 1977),

We first analysed whether the availability of an external memory had
an influence on subjects’ exploratory activities by reducmg the interference
from similar state transitions {Hypothesis 1), 1f thus was the case, subjects
in Groups SM and DM should have exposed themselves 10 more differemt
state transitions than subjects in Group NM. Table | (upper section) dis-
plays the relevant data, Two ANOVAs were run separately for the two
automata with planned contrasts lo compare the memory groups to Group
NM. The F-tests yielded significant group differences only for the small
automaton, F(2, 65) = 3.93, R] = 0.11 [vs. (2, 65) < 1.38 for the com-
plex automaton], a direct comparison showed that the difference in the
small automaton s due to Group NM's lower number of different state
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TABLE1
Mean Number of Differant State Tranaitions and "0 Simtes during the
Exploration Phases for the Three Experimentsl Groups and the
Two Different Automata

Crrowgs

Vartahles Avtomaton N SAr DM

Different state transitions Small  339(2.1) 3WS(R6)  41.6(10.0)
Complex  60.9(17.1) 66.8(14.2) 67.3(12.3]

Ol states Srmall 56.9(17.2) 45.9016.0)0 40.9(16.0)
Complex  40.7([58) 35.8(199) 321(18.4)

Note:  Standard deviations are given in parentheses.

transitions relative to the memory groups [n(65) = —2.56], whereas there
is no difference between Groups SM and DM [1(65) < 1.14].

Table 1 also displays how many trials subjects spent with the automaton
“switched off”, which we analysed for exploratory purposes. In contrast
to any of the other dependent variables considered here. this represents a
possible system-specific measure of performance. A person who is belter
at acquiring the “on/off™ concept should "waste™ fewer intervention trials
with the automaton switched off. For the small automaton, we find overall
group differences, F(2, 65) = 5.53, R, = (.15, planned contrasts revealed
significant differences between the memory groups and Group NM,
#65) = 3,17, but not between Groups SM and DM [(635) < —1.03]. For
the complex automaton, the overall test indicated that the group means
do not differ significantly [F(2, 65) < 1.28].

The data from the control task are shown in Table 2. An ANOVA with
group as independent factor showed that there is no significam difference
for either the small automaton [ K2, 65) < 1.79] or the complex automaton
[F < 1] in terms of how ofien subjects reached the goal state during the
control 1ask. Considering, however, the low overall number of goal states
reached and the fact that the means are in the expected direction a1 a
descriptive level, one might suspect & floor effect. If one applies the optimal
sequence of interventions for the small sutomaton, the goal state can be
reached 12 times during 50 intervention trials (three transitions from the
Initial State S1 10 S8 plus one “autonomous™ transition back to the initial
state), With the complex automaton the goal state can be reached five
times at the most. It is possible that the automata were 100 difficult 10
control|, given the number of exploration trials,

The knowledge acquired about the automaton should be reflected in
the number of correct responses on the recognition test (see Figure 5). A
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TABLE 2
Mean Number of Gosl States Reached during the Control
Phass for the Three Experimental Groups and

the Two Ditferent Automats
Groups
Automaton NM SM DM
Small 0.7(2.4) 26(4.3) 16(3.3)
Complex h4{1.3) 0.9{1.8) 0.7 (1.8}

MNowe: Swandard devianons are given in pareniheses.

global F-test mdicates performance differences on the small automaton
between groups, F{2, 65) = 7.23, R} = 0.18; planned contrasts show that
whereas there is no difference bcmeaen Groups SM and DM [r(ﬁs] < 1.08],
the difference between the memory groups and Group NM is significant,
#(65) = —3.65. The memory groups have more knowledge available about
the automaton than does the group without support. For the complex
automaton, the global F-test yields no significant group differences
(F= L.L1). Itasm:erﬂungmnamthanhewnﬁdcmmﬂngsthal followed

each recognition item show exactly the same pattern. For the small auto-

Smull Autcwnaton Comples Autommaton

O Ao exernal memory
B suiic evernal memory
B Dyenamic. external memory

Number af correct responses

Phures
FI(:. 5. nwnumhrufmmmpmmtb:wmmhmmm
mmummzmplmmmmmmphmmmmmmmwu
sutomaton. The error bars represenl the standard deviations.
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maton, there are significant group differences, F(2, 65) = 6.41, R} = 0.17;
the difference exists between the memory groups and Group NM,
n(65) = 3.37, and there i$ no difference betwsen Groups SM and DM
[r(65) < 1.23]. For the complex automaton, there are no significant group
differences [F(2, 65) < 1.78].

Considering performance on the small automaton, the data seem io be
compatible with Hypotheses | and 2 (with the exception of the control
phase). Performance benefits due to the availability of an external memory
can be observed. However, Groups SM and DM consistently do not show
any performance differences. Thus, Hypothesis 3 can be rejected.

In general, performance is worse on the automaton for both
the number of goal states reached [F(1, 65) = 6.33, R} = 0.09] and the
number of correct responses 10 recognition items [F(1, 65) = 40,99,
R: = 0.39). This pattern has been specified by Hypathesis 4. Together with
the fact that performance benefits for the memory groups occurred only
for the small automaton, this points to the differential utility of the external
memory support. It was effective only when subjects interacted with the
less complex of two otherwise very similar automata (Hypothesis 5).

The recognition test also illustrates that subjects continuously acquire
more knowledge about the sutomata. A MANOVA with phases as within-
subjects factor and plansed contrasts confirms that the number of correct
responses on the recognition task in ; as a function of
menmurammmmmaﬁ-‘mgww.ﬁmh

the complex automaton, F(1, 63) = 10,40, .ﬁ;u i}.u, ‘ot for the small
automaton [F(1, 65) < |.83], This may be due to the in- effi-
mmwmm&mﬁdh&eMﬁdﬁmhmhm
critical items in the complex antomaton (see Table A2): '

Table 3 also shows the “mode’ interaction (items 3 and 4, see Table
AJ) was more difficult to understand than the “onfoff” interaction (items
5 and 6) of the input varisbles (sec Table 3). A MANOVA with item type
as within-subjects fmmmulﬂﬁpﬂﬂmnﬂﬂ:mbﬂmtﬁem
different types of items, F(1, 65) = 60.91, R} = 0,48, '

Finally, wrmnﬂmmwhethuwﬂmld'ﬂudlhwiﬂhmi
cﬁe;tss;xuﬁ:dbyﬂmolhﬁuﬂntheurmﬂlﬂhmuﬂtIﬂ
events (i.e. state transitions) as experienced during exploration is mentally
represented, lhenmmwmtuthewmndmnmbﬁnflpahﬂﬂtm“m
responding™ to this seriality should be facilitated. In contrast, reaction
times to “contradicting” items and 1o the first members of the pair should
be slower. The latter items may be called “‘neutral” because they follow &
distractor item. Only reaction times of correct answers were entered into
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TABLE 2
Mean Number of Gosl States Reached during the Control
Phass for the Three Experimental Groups and

tha Two Different Automats
Growups
Alitomaton NM M DM
Samyall 0.7{2.4) 26(4.3) L&6(3.3)
Comples D.4{13) D218 0.7(1.8)

Note: Siandard deviations are given i parentheses.

global F-test indicates performance differences on the small automaton
between groups, F{2, 65) = 7.23, R} = 0.18; planned contrasts show that
whereas there is no difference between Groups SM and DM [#(65) < 1.08],
the difference between the memory groups and Group NM is significant,
1(65) = —3.65. The memory groups have more knowledge available about
the automaton than does the group without support. For the complex
automaton, the global F-test yields no significant group differences
(F < 1.11). Itis interesting to note that the confidence ratings that followed
each recognition item show exactly the same pattern. For the small auto-

Samial] Antewnatan Compler Autownaton

% Mo exrernal memory
Semtlc extermal memory

B Dyramic exiernal memory

Number al correct responses

Phases

FIG, 5. Awnumnﬁmmhmmmmmm
[l]ﬂmﬂ[!]ﬂnmﬂ“mﬂﬂ:mﬁdﬁm(ﬂ}h!h&mﬂmﬁhuﬂn
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maton, there are significant group differences, F(2, 65) = 6.41, R} = 0.17;
the difference exists between the memory groups and Group NM,
1{65) = 3.37, and there is no difference between Groups SM and DM
[/{65) < 1.23]. For the complex automaton, there are no significant group
differences [F(2, 65) < 1.78].

Considering performance on the small automaton, the data seem to be
compatible with Hypotheses | and 2 (with the exception of the coatrol
phase), Performance benefits due to the availability of an external memory
can be observed. However, Groups SM and DM consistently do not show
any performance differences. Thus, Hypothesis 3 can be rejected.

In general, performance is worse on the co automaton for both
the number of goal states reached [F(1, 65) = 6.33, R} = 0.09] and the
number of correct responses to recognition ems [F(1, 65) = 40.99,
R} = 0.39]. This pattern has been specified by Hypothesis 4. Together with
the fact that performance benefits for the memory groups occurred only
for the small automaton, this points to the differential utility of the external
memory support. It was effective only when subjects interacted with the
less complex of two otherwise very similar automata (Hypothesis 5).

The recognition test also illustrates that subjects continuously acquire
more knowledge about the automata. A MANOV A with phases as within-
subjects factor and planned contrasts confirms that the number of correct
responses on the recognition task increases monotonically as a function of
the number of trials on the task, F(2, 64) = 64.13, R} = 0.67, from the
first to the second exploration phase, F(1, 65) = 40.35, and from the first
two exploration phases to the subsequent control phase, F(1, 65) = 123.38.

A more detailed analysis of some of the items of the recognition test
revealed that efficiency—divergency effects (Hypothesis 6) were found for
the complex automaton, F{1, 65) = 10.40, R} = 0.14, but not for the small
automaton [F(1, 65) < 1.83]. This may be due to the difference in effi-
ciency as implemented in the automata. The difference is larger for the
critical items in the complex automaton (see Table A2),

Table 3 also shows the “mode™ interaction (items 3 and 4, see Table
A3) was more difficult to understand than the “on/off” interaction (items
5 and 6) of the input variables (see Table 3). A MANOVA with item type
as within-subjects factor revealed significant differences between the two
different types of items, F(1, 65) = 60.91, R = 0.48.

Finally, our concern was whether we would find the representational
effects specified by Hypothesis 7 in the verification task. If the seriality of
events (i.¢. state transitions) as experienced during exploration is mentally
represented, then reactions to the second member of a pair of items “cor-
responding” to this seriality should be facilitated. In contrast, reaction
times to “contradicting” items and to the first members of the pair should
be slower. The latter items may be called “'neutral” because they follow a
distractor item. Only reaction times of correct answers were entered into
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TABLE 3
Average Number of Correct Answers to an Hem on the Recognition Tesk Following
the Two Exploration Phases and the Control Phass

Itens 3 & 4 frems 5 & 6 lem & Tem 10
e ! i nwﬁ‘ﬁl Him !lﬁ- nmll r
mteraction imteraction  efficieat input” gl

Small Automaton 0 — 0.9

0 —— L5
Complen Automalon 1.13

—_—t 075

Newe:  Maximum i8 three COIMECT BRIWETS.

the analyses.* Reaction times to contradicting items are significantly slower
than reaction times to corresponding items [see Figure 6: F[2, 57) = 4.51,
R = 0.14, and F(2, 54) = 4.95, R; = 0.16, for the small and complex
automaton, respectively]. In contrast, reaction times to contradicting items
are not different from reaction times 1o neutral items (both Fs < 1). Pre-
senting items in their normal order facilitates their verification. These data
are in line with Hypothesis 7.

Discussion

The most prevalent result of the present experiment is that the external
memory support showed beneficial effects on a number of different
performance measures, but only for the less complex of two lulmnarta._lt
is suggested that this finding is best interpreted in n‘nn.'lngy to_the djﬁcmamﬂ
approach known from clinical psychology according to which we may ask

Seall Automaton  Comples Atomasn
FIG. 6 Mean reaction limes for correct responses to different types of items in the
verification task<
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which type of support system is indicated in which situation under which
type of task demand for which type of person. Consequently, a desirable
strategy of support system design would take into account as much as
possible person variables, situational variables, and task variables. In the
present case, complexity as a task vanable had a differential effect on the
utility of the support system, Subjects benefited from the external memory
only when they explored the small automaton.

The external support did not affect performance on the number of goal
states subjects reached dunnpg the control phase. This variable seems 1o
represent a difficult aspect of the experimental task, and the results could
refiect & floor effect. In this case giving subjects more trials to explore the
system should reveal group differences, Allernatively, one could develop
more refined measures of control performance. How often subjects reach
a certain goal state is only a very global assessment of their control perform-
ance. It seems possible to design tasks at different levels of difficulty that
are indicative of subjects’ knowledpe sate (cf. Falmagne, 1989).

In no case was the performance of Group DM better than that of Group
SM. This finding runs contrary to our expectations, We therefore analysed
how often subjects in Group DM actually used the option to meke a
well-known old state the new state from which to resume exploration. It
turned out that just about hall of the subjects in Group DM (12 out of 23)
ever used the option. Those subjects who used it did so on an average of
only 4.1 (out of a maximum of 16) occasions. This could explain why Group
DM did not perform better than Group SM. The external memory itself
was automatically displayed in a fixed interval of six trials. In contrast, the
“dynamic” option was left at subjects’ disposal. More importantly, there
was no obvious visual reminder of the option an the screen (subjects simply
clicked onto the desired state display in the memory window—see Figure
4). It might be that such design factors contributed to the fact that the
option was mostly ignored.

With respect to the number of different state transitions, it is interesting
to note that the memory manipulation in this case affected a variable that
reflects a gqualitative aspect of subjects” exploratory behaviour. Our inter-
pretation of this finding is that the availability of past system states on an
external medium reduces the interference in memory that is otherwise
caused by state transitions that share identical elements of the 5~/~5..,
triple.

The efficiency—divergency effect had been demonstrated for the complex
automaton only. This could be due to the somewhat smaller efficiency-
divergency difference between the critical inputs in the small automaton.
If the interpretation is correct, the finding indicates that exploring an
unknown device parallels a complex choice situation in that subjects prefer
actions that imply more alternatives but lead to a goal less efficiently com-
pared to actions that are more efficient but less divergent.
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Reaction times to state transitions in the verification task yielded useful
information about how discrete dynamic systems might be represented. If
the second item of a pair was a state transition that in the chronology of
system events occurred after the first item, reaction times were faster than
when the second item had actually occurred before the first member of the
pair. The facilitative effect indicates that seriality is an important aspect
of how experience with a dynamic system is mentally represented. This
could have implications for the development of new diagnostic procedures
to assess system knowledge more adequately, In the present experiment,
the items in the diagnostic phases were independent, and their sequence
was randomized. In addition, they were static, presenting §,, [, and the
new (to be recognized) §,., at the same time. Thus, one possible con-
sequence for the further development of diagnostic procedures could be
to probe subjects’ knowledge with sequences of items that correspond to
the chronology of system events.

GENERAL DISCUSSION

The purpose of this paper was to illustrate how a well-elaborated theor-
etical background such as the theory of finite-state antomata can provide
the basis for an interesting experimental paradigm in research on know-
ledge acquisition and knowledge application using computer-simulated
“*microworlds”. More specifically, the approach can be heipful in con-
structing classes of task environments that can be compared with respect
to formal characteristics, and it facilitates the direct manipulation of such
characteristics by providing a common formal background. We have also
argued that the formalism for describing automata can be used to select
plausible psychological hypotheses about, for instance, how learning-by-
exploration may proceed, and how system information is represented.

Another interesting aspect of the approach is that it directly suggests a
mumber of methods 1o assess a person’s knowledge about a system. These
methods are both general in the sense that they can be applied to any
automaton (e.g. “prognostic questions™), and related to “classical™ meas-
ures of memory like cued recall, recognition, or verification tasks, Such
items may be ¢ither randomly sampled from the state transition matrix, or
they may be selected to cover critical features of the task environment.
The latter procedure has been used in the recognition task in the present
experiment. With respect to the verification task, we would like to point
out that methods of “mental chronometry™ (Posner, 1978), which have up
to now been absent in this research domain, were shown to be applicable
to assessing the way system information is represented in memory.

In addition, finite-state automata theory provides a criterion for optimal
performance that is essential for evaluating a person’s system control
behaviour. However, other performance measures are also readily avail-
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dble. For instance, we have attempled to demonstrate that the number of
different state transitions a person decides 1o explore can be an interesting
dependent variable. Another example could be to compare recognition
items covering transitions that have actually been explored to items cov-
ering transitions that have not. This procedure may turn out to be useful
for assessing generalization processes such as a person’s discovery of an
"ON/OFF" or “‘mode” interaction. To conclude this point, we would like
to argue that these more general methods of knowledge assessment are a
rather attractive alternative to idiosynceratic diagnostic procedures that are
directly denived from task parameters such as "production outpm" (e.g.
Dérner, 1987; Mornis & Rouse, 1985).

We also wish to emphasize the parallels between finite-state automata
and finite grammars (e.g. Chomsky & Miller, 1958). Finite grammars
generate structured event sequences such as sentences over an alphabet,
whereas finite stale automata “undersiand” these sequences. This suggests
a close relationship between tasks that involve identifying the structure of
an automaton and tasks that require subjects to process material that was
generated by a finite grammar (e.g. Brooks, 1978; Dulany, Carlson, &
Dewey, 1984; Reber, 1989).

Of course, using a finite-state automata framework in experimental
psychology is not an entirely new idea. Suppes (1969), for instance,
suggested the use of automata theory as a theoretical background for mod-
elling animal and human behaviour. Another application of automata
theory is the construction of machine prototypes and the analysis of human
effort to reach certain goals, Such analyses were done by Bidsser and
Melchior (1992). However, the potential of automata theory as a frame-
work for generating classes of dynamic task environments and appropriate
diagnostic instruments has 1o our knowledge not been outlined before.

The most serious problem of the finite state automata approach to
human interaction with dynamic systems probably is one of system com-
plexity. In principle, it is possible to design discrete dynamic systems of
any complexity.” However, there is a practical upper limit in terms of
computer memaory and computational effort as well as in terms of the effort
it takes the experimenter to construct very large state transition matrices,
For instance, the simulation of a complicated industrial production process
clearly is beyond the capability of the approach. This limitation certainly
reduces the applicability of the discrete systems framework.

We can see two partial remedies to the problem: (1) It may not be
necessary to simulate the entire complexity of a learning environment 1o
mvestigate the basic cognitive processes involved in interacting with ir.

"It should be noted 1hat most so-called ~“continoous™ systems sre in principle discrets in
that they accept as input and display as output only discrete numbers. On the other hand,
discrele systems’ outpul may appear contimsous if it has a sufficiently large numbes of levels,
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Depending on the system, it could be possible to omit certain details or
simulate only parts of the system as long as “simulation fidelity” (Hays &
Singer, 1989) can be preserved. (2) A second aspect is that some of the
advantageous properties of the approach, such as the diagnostic procedures
and representational assumptions discussed above, can be utilized as long
as one conceives of the system in terms of a finite-state automaton, The
actual implementation may be quite different.

Yet another problem common to many approaches to human interaction
with complex dynamic task environments is finding the proper level of
abstraction for characterizing a device. For the case of learning about an
entirely new device, we have assumed that different states, interventions,
and next states must become associated. In this situation learning ocours
on the level of physical events in the automaton. After some experience,
however, individual sute transitions may be combined into chunks. Soch
chunks may be “horizontal” combinations of tramsitions into routings 1o
get a system reliably from one state to a distant state, or they may be
“vertical” combinations across, for example, a specific intervention like an
“OR/OFF" switch. The problem of developing an adequate model for such
abstraction processes Is aggravated by the fact that concepts may be avail-
able at different degrees of abstraction. Coneepts at different degrees of
abstraction enable more expenienced learners to attend to (and, hence,
control) a task at different levels. Naturally, if a person has prolonged
experience with attending to a task at a high level of abstraction, it may
be difficult and effortful to recollect individual states and interventions
when required to do so, either outside the context of the immediate control
process or if an unexpected event, like a failure, interrupts an ongoing
procedure. This is assumed because normally what we are able to recall is
information we actively attend to (Kellog, 1980; Norman, 1969). Moray
(1990}, for instance, has presented a “lattice theory™ designed to describe
such abstraction phenomena occurring at different levels. He does not,
however, make any assumptions about cognifive processes involved in
abstraction, nor does he specify how shifts between different levels of
abstractions might occur.

The processes underlying abstractions of the type described here will
certainly need more attention in the furure. Nevertheless it can be
interesting to analyse learning processes at the elementary level of state
transitions. In another study (Buchner & Funke, 1991), we investigated
carly learning in and transfer of associations between finite-state automata.
After initially acquiring knowledge about a “source automaton" (a
simplified radio with a built-in alarm device), several groups of subjects
performed on different "target automata™. The state transition matrices
underlying the target automata were identical for all groups but completely
different from that of the source automaton, The automata differed with
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respect 1o the labelling of their input and output signals. In one condition
these labels were entirely new, whereas in a different condition the original
labels had been preserved. If learning indeed occurs at the level of associ-
ating states, interventions, and next states, the latter case should corres-
pond to the A-B, A-Br situation in paired associate learning (cf. Martin,
1965), Stimuli and responses from the first hist are preserved in the transfer
list except that they are repaired. This is known to produce considerable
negative transfer, In accordance with our cxpectations, it was observed
that those subjects performed worst that interacted with the target auto-
maton in which the onginally associated elements were preserved but were
also repaired (due to an entirely different transition matrix),

In summary, there are definite problems and limitations that come with
the approach we advocated for in this paper. However, we believe that jts
attractive features make it worth exploring further the applicability to
research using dynamic task environments, In this sense the finite-state
automata approach could provide an interesting additional way of address-
ing problems of human knowledge acquisition and knowledge use in
dynamic tasks, and it could have the potential to stimulate research in the
area.
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APPENDIX

TABLE A7

Trangition Matrix for the Small Automaten (“Ticket Vendor”)
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TABLE A2
State Transition Matrix for the Compiex Automaton (“Automatic Teller™)

Tnper Signad

Ao

i

o

I+

FE]

i

State Name

$$558535555s%85%

T B Bt s et B e O oy I O )

————————————
uuuuuuuuuuuu
____________

———————————

L i

e R
ll-ll"lvl-ll-l R

—_— —

------------

............

FHRRRRGBRES

§8598853%3%

e e
— - — e m—

__________
——————————
__________
__________

— o S o me mS —

------

----------

H‘lﬂ\ﬂl“ﬂﬂhﬁi—ﬂ
———————
MmN H

§95§555555%§%5+%

ARAAARAAAAa8a8
ARAAAAAAARAanR
ARFAARARAARARAAR
ARAAAaAaaasan

b b B o s e e o e

ARABAAARAARA
H3IZIIIIRIZZ
EEFARAAZZIARR
HERERHISIIER

SHEBRARFRRAYRR

............

523 Code OK: 0 ECU

524 Caode OK: I0ECL

530 Code QK: 50 ECL
Code OK: S5 ECU
Caode QK 60 ECL)
Code OK: 65 ECU
Code OK: too much

531
532
53
534

§9§5552523¢=

RELRERSFENET
BRSO RAART
EeEsRrRasER-"—
fgoesRRIsRa-

RRmRRaREssT

AEARRRRRHA"
dAEeaangaassT
ammanaEagsT
ARERARRRAART

mMAERRRARARRT

EJUG::lﬂﬂ
3533333333

SEEELE84EE

----------

&8 8 B e e B E S

; e
i@ungggggﬂs
Z48EREL R LY
I
FahaaIIN3I

o, Amount,

1The “_.."" symbol indicates that any impui ls possitile in this row,

Note:  Description analogous 1o Teble Al



TABLE A3
Recognition Itams Used in tha Diagnostic Pheses

Small Auromaton Complex Automaton
fem 'Sr !l SHI W sl vff 's.ru
1 i 4 3 Code— Code a7 B 40
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Note: The numbers of the states and input signals refer 10 the stalc ransition mainces
depicted in Tables Al and A2, The “Comment™ column illustrates which functional aspect
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