Optimization and the Psychology of Human Decision Making

C. Barth, J. Funke
Experimental and Theoretical Psychology
H. Diedam, M. Engelhart, S. Sager
Interdisciplinary Center for Scientific Computing

HPSC 2009

Hanoi

Sager
Tailorshop - 1

Outline

Introduction

Mathematical formulation

Reformulations

Using Optimization as an Analysis Tool

Algorithm

Conclusions and Outlook

Goals of psychologists

- Research complex problem solving of human beings

Goals of psychologists

- Research complex problem solving of human beings
- Want to understand how external factors influence thinking
- Example: positive or negative feedback
- Example: stress
- Example: learning effects

Goals of psychologists

- Research complex problem solving of human beings
- Want to understand how external factors influence thinking
- Example: positive or negative feedback
- Example: stress
- Example: learning effects
- Approach: use computer-based test scenarios
- Evaluate performance and correlate it to attributes
- Example: proband's capacity of emotion regulation

Complex problem solving

- High-order cognitive process
- Complexity stems from: coupling, nonlinearities, dynamics, intransparency, ...
- Psychologists work since ≈ 100 years on understanding

Complex problem solving

- High-order cognitive process
- Complexity stems from: coupling, nonlinearities, dynamics, intransparency, ...
- Psychologists work since ≈ 100 years on understanding
- [Ewert\&Lambert,1932]: disk problem

Complex problem solving

- High-order cognitive process
- Complexity stems from: coupling, nonlinearities, dynamics, intransparency, ...
- Psychologists work since ≈ 100 years on understanding
- [Ewert\&Lambert,1932]: disk problem

Complex problem solving

- High-order cognitive process
- Complexity stems from: coupling, nonlinearities, dynamics, intransparency, ...
- Psychologists work since ≈ 100 years on understanding
- [Ewert\&Lambert,1932]: disk problem

- Since 70s/80s: also use computer simulations

Measure capacity to solve complex problems

- Measure proband's performance
- Performance in a round based test scenario
- Tailorshop developed in the 80s by Dörner
- Referenced in many studies and books by now

Measure capacity to solve complex problems

- Measure proband's performance
- Performance in a round based test scenario
- Tailorshop developed in the 80s by Dörner
- Referenced in many studies and books by now
- Collect data from probands:
- Quantified emotions: own statements
- Standardized tests to classify probands according to groups, e.g., good or poor emotional regulation
- Quantified emotions: observation of study leader
- Quantified emotions: video analysis

The tailorshop

- Round based decision making
- How to produce, distribute, and sell shirts

- Goal: maximize profit after 12 months

Hier der Zustand Ihres Ladens alli Ende von Monat 0

Flüssigkapital	$:$	165775	Gesamtkapital (Bilanz)	$:$	250691
verkaufte Hemden	$:$	407	Nachfrage (aktuell)	$:$	767
Rohmaterial: Preis	$:$	4	Rohmaterial: im Lager	$:$	16
fertige Hemden im Lager	$:$	81	50 -Hemden-Maschinen	$:$	10
Arbeiter für 50er	$:$	8	100 -Hemden-Maschinen	$:$	0
Arbeiter für 100er	$:$	0	Reparatur \& Service	$:$	1200
Lohn pro Arbeiter	$:$	1080	Sozialkosten pro Arbeiter :	50	
Preis pro Hemd	$:$	52	Ausgaben für Werbung	$:$	2800
Anzahl der Lieferwagen	$:$	1	Geschäftslage	Cityrand	
Arbeitszufriedenheit	in \%:	57.7	Maschinen-Schäden	in \%:	5.9
Produktionsausfall	in \%:	0.0			

Maßnahmen für Monat 1

R = Rohmaterial einkaufen
= Kosten für Werbung ändern
= Maschinen (uer)kaufen, tauschen
= Lohn pro Arbeiter ändern
= Geschäftslage wechseln

H = Hemdenpreis ändern
A = Arbeiter einstellen oder entlassen
I = Instandhaltung, Reparatur/Seruice
S = Sozialkosten pro Arbeiter ändern
T = Lieferwagen kaufen oder verkaufen

D = Informationen aus der Datenbank
E = Ende der Eingriffe für diesen Monat

So what is missing?

- Main motivation for simple test scenarios
- Optimal solution is known
- Proband's performance is easy to analyze

So what is missing?

- Main motivation for simple test scenarios
- Optimal solution is known
- Proband's performance is easy to analyze
- More complex scenarios
- Optimal solution is NOT known
- Performance only comparable among probands
- or isolated indices, e.g., advance in overall capital
- Hard to say when and what the wrong decisions were

So what is missing?

- Main motivation for simple test scenarios
- Optimal solution is known
- Proband's performance is easy to analyze
- More complex scenarios
- Optimal solution is NOT known
- Performance only comparable among probands
- or isolated indices, e.g., advance in overall capital
- Hard to say when and what the wrong decisions were
- Is it possible to have a detailed (and correct) analysis?
- Yes. Need to formulate optimization problem!

Modeling - what was available?

- Heuristic descriptions
- GWBasic source code

GUI used for tests

GUI used for tests

Sager
Tailorshop - 11

GUI used for tests

Sager Tailorshop - 12

Available GW Basic source code - extract

Observations

- Nonlinear
$2720 \mathrm{NA}=(\mathrm{NA} / 2+280) * 1.25 * 2.7181^{\wedge}\left(-\left(\mathrm{PH}^{\wedge} 2\right) / 4250\right)$

Observations

- Nonlinear
$2720 \mathrm{NA}=(\mathrm{NA} / 2+280) * 1.25 * 2.7181^{\wedge}\left(-\left(\mathrm{PH}^{\wedge} 2\right) / 4250\right)$
- Integer variables

2790 X=0:IF GL=. 5 THEN:X=.1:ELSE IF GL=1 THEN:X=. 2

Sager
Tailorshop - 14

Observations

- Nonlinear
$2720 \mathrm{NA}=(\mathrm{NA} / 2+280) * 1.25 * 2.7181^{\wedge}\left(-\left(\mathrm{PH}^{\wedge} 2\right) / 4250\right)$
- Integer variables

2790 X=0:IF GL=. 5 THEN:X=.1:ELSE IF GL=1 THEN:X=. 2

- Random values ξ

```
2810 NA=X1+(RND*100-50)
```


Observations

- Nonlinear

$$
2720 \text { NA }=(\mathrm{NA} / 2+280) * 1.25 * 2.7181^{\wedge}\left(-\left(\mathrm{PH}^{\wedge} 2\right) / 4250\right)
$$

- Integer variables

```
2790 X=0:IF GL=.5 THEN:X=.1:ELSE IF GL=1 THEN:X=.2
```

- Random values ξ

```
2810 NA=X1+(RND*100-50)
```

- Nondifferentiable

$$
2650 \mathrm{ZA}=.5+((\mathrm{LO}-850) / 550)+\mathrm{SM} / 800: \mathrm{IF} \text { ZA>ZM THEN:ZA=ZM }
$$

Observations

- Nonlinear

```
2720 NA= (NA/2+280)*1.25*2.7181^(- (PH^2)/4250)
```

- Integer variables

```
2790 X=0:IF GL=.5 THEN:X=.1:ELSE IF GL=1 THEN:X=.2
```

- Random values ξ

```
2810 NA=X1+(RND*100-50)
```

- Nondifferentiable

$$
2650 \mathrm{ZA}=.5+((\mathrm{LO}-850) / 550)+\mathrm{SM} / 800: \mathrm{IF} \mathrm{ZA}>\mathrm{ZM} \text { THEN:ZA=ZM }
$$

- Sometimes variable time k, sometimes already updated

```
2 6 9 0 ~ P M = X * ( M A + R N D * 4 - 2 ) + Y * ~ ( M A * 2 + R N D * 6 - 3 ) : P M = P M * ~ ( A B S ~ ( Z A ) ~ . ~ . 5 ) ~
2700 X=PM:IF RL<X THEN:X=RL
2710 PA=X:HL=HL+PA:RL=RL-PA:KA=KA-(PA*1)-(RL*.5)
```


Abstract optimization model

- Dynamic model with discrete time $k=0 \ldots N$

Abstract optimization model

- Dynamic model with discrete time $k=0 \ldots N$
- Decisions $u_{k}=u(k)$ and states $x_{k}=x(k)$

Abstract optimization model

- Dynamic model with discrete time $k=0 \ldots N$
- Decisions $u_{k}=u(k)$ and states $x_{k}=x(k)$
- Given initial values x_{0} and parameters p

Abstract optimization model

- Dynamic model with discrete time $k=0 \ldots N$
- Decisions $u_{k}=u(k)$ and states $x_{k}=x(k)$
- Given initial values x_{0} and parameters p
- Random values ξ

Abstract optimization model

- Dynamic model with discrete time $k=0 \ldots N$
- Decisions $u_{k}=u(k)$ and states $x_{k}=x(k)$
- Given initial values x_{0} and parameters p
- Random values ξ
- Goal: find decisions u_{k}
to maximize objective function of x_{N}

Abstract optimization model

- Dynamic model with discrete time $k=0 \ldots N$
- Decisions $u_{k}=u(k)$ and states $x_{k}=x(k)$
- Given initial values x_{0} and parameters p
- Random values ξ
- Goal: find decisions u_{k}
to maximize objective function of x_{N}

Abstract optimization model

- Dynamic model with discrete time $k=0 \ldots N$
- Decisions $u_{k}=u(k)$ and states $x_{k}=x(k)$
- Given initial values x_{0} and parameters p
- Random values ξ
- Goal: find decisions u_{k} to maximize objective function of x_{N}

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) & \\
\text { s.t. } & x_{k+1}=G\left(x_{k}, x_{k+1}, u_{k}, p, \xi\right), & k=0 \ldots N-1, \\
& 0 & \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), \\
& k=0 \ldots N-1, \\
u_{k} & \in \Omega, & k=0 \ldots N-1 .
\end{array}
$$

Control functions u_{k}

Decision	$l o w \leq$	u_{k}	$\leq u p$
advertisement	$0 \leq$	$W E$	$\leq \infty$
shirt price	$10 \leq$	$P H$	≤ 100
buy raw material	$0 \leq$	$\Delta R L$	$\leq \infty$
workers 50	$-A_{1} \leq$	ΔA_{1}	$\leq \infty$
workers 100	$-A_{2} \leq$	ΔA_{2}	$\leq \infty$
buy machines 50	$0 \leq$	ΔM_{1}	$\leq \infty$
buy machines 100	$0 \leq$	ΔM_{2}	$\leq \max (0, M A-35) \cdot \infty$
sell machines 50	$0 \leq$	δM_{1}	$\leq M_{1}$
sell machines 100	$0 \leq$	δM_{2}	$\leq M_{2}$
maintenance	$0 \leq$	$R S$	$\leq \infty$
wages	$850 \leq$	$L O$	$\leq \infty$
social spenses	$0 \leq$	$S M$	$\leq \infty$
buy vans	$0 \leq$	$\Delta L W$	$\leq \infty$
sell vans	$0 \leq$	$\delta L W$	$\leq L W$
Choose site		$G L$	$\in\{c, r, v\}$

State variables x_{k+1} and x_{k}

State	x_{k+1}	$G\left(x_{k}, x_{k+1}, u_{k}, p, \xi\right)$	
machines 50	M_{1}	$M_{1}+\Delta M_{1}-\delta M_{1}$	
machines 100	M_{2}	$M_{2}+\Delta M_{2}-\delta M_{2}$	
workers 50	A_{1}	$A_{1}+\Delta A_{1}$	
workers 100	A_{2}	$A_{2}+\Delta A_{2}$	
demand	$N A$		if $\begin{aligned} G L & =c \\ \text { i } G L & =r \\ \text { if } G L & =v\end{aligned}$
vans	LW	$L W+\Delta L W-\delta L W$	
shirts sales	VH	$\min \left(H L, \frac{5}{4}\left(\frac{N A}{2}+280\right) \cdot 2.7181^{-\frac{P H^{2}}{4250}}\right)$	
shirts stock	HL	$H L+P A-V H$	
possible production	PM	$\begin{aligned} & \left(\min \left(A_{1}, M_{1}\right)(M A+4 \xi-2)\right. \\ & \left.\quad+\min \left(A_{2}, M_{2}\right)(2 M A+6 \xi-3)\right) \cdot\|Z A\|^{\frac{1}{2}} \end{aligned}$	
actual production	PA	$\min (P M, R L+\Delta R L)$	
material price	RP	$2+6.5 \xi$	
material stock	$R L$	$R L+\triangle R L-P A$	
satisfaction	ZA	$\min \left(Z M, \frac{1}{2}+\frac{L O-850}{550}+\frac{S M}{800}\right)$	
machine capacity	MA	$\min \left(M M, 0.9 M A+0.017 \frac{R S}{M_{1}+10^{-8} M_{2}}\right)$	

State variables: money

$$
\begin{aligned}
U K= & K A+V H \cdot P H-R P \cdot \Delta R L \\
& -10000 \Delta M_{1}+8000 \frac{M A}{M M} \delta M_{1}-20000 \Delta M_{2}+16000 \frac{M A}{M M} \delta M_{2} \\
& -S K-W E-R S-\left(A_{1}+A_{2}\right) \cdot L O \\
& -P A-\frac{1}{2} R L-(H L+P A) \\
& -10000 \cdot \Delta L W+(8000-100 k) \cdot \delta L W-500 L W \\
& -\left\{\begin{aligned}
2000 & \text { if } G L=c \\
1000 & \text { if } G L=r \\
500 & \text { if } G L=v
\end{aligned}\right. \\
K A= & U K\left(1+\left\{\begin{array}{ll}
G Z & \text { if } U K \geq 0 \\
S Z & \text { if } U K<0
\end{array}\right)\right.
\end{aligned}
$$

Goal: maximize L_{N} :

$$
\begin{aligned}
L= & K A+\frac{M A}{M M}\left(8000 M_{1}+16000 M_{2}\right) \\
& +(8000-100 k) \cdot L W+2 R L+20 H L
\end{aligned}
$$

Fixed initial values x_{0} and parameters p

State	x_{k}	$x_{0}=$
machines 50	M_{1}	10
machines 100	M_{2}	0
workers 50	A_{1}	8
workers 100	A_{2}	0
demand	$N A$	766.636
material price	$R P$	3.9936
material stock	$R L$	16.06787
shirts stock	$H L$	80.7164
machine capacity	$M A$	47.04
cash	$K A$	165774.66
vans	$L W$	1

Parameter	p	$p=$
maximum demand	$N M$	900
interest rate	$G Z$	0.0025
debt rate	$S Z$	0.0066
maximum machine capacity	$M M$	50
maximum satisfaction	$Z M$	1.7

Modeling issues

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) & \\
\text { s.t. } & x_{k+1}=G\left(x_{k}, x_{k+1}, u_{k}, p, \xi\right), & k=0 \ldots N-1, \\
& 0 & \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), \\
& k=0 \ldots N-1, \\
& u_{k} \in \Omega, & k=0 \ldots N-1
\end{array}
$$

- More realistic modeling (delays, memory effects, ...)

Modeling issues

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) & \\
\text { s.t. } & x_{k+1}=G\left(x_{k}, x_{k+1}, u_{k}, p, \xi\right), & k=0 \ldots N-1, \\
& 0 & \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), \\
& k=0 \ldots N-1, \\
& u_{k} \in \Omega, & k=0 \ldots N-1
\end{array}
$$

- More realistic modeling (delays, memory effects, ...)
- Modeling errors

Modeling issues

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) & \\
\text { s.t. } & x_{k+1}=G\left(x_{k}, x_{k+1}, u_{k}, p, \xi\right), & k=0 \ldots N-1, \\
& 0 & \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), \\
& k=0 \ldots N-1, \\
u_{k} & \in \Omega, & k=0 \ldots N-1
\end{array}
$$

- More realistic modeling (delays, memory effects, ...)
- Modeling errors
- Random values ξ

Modeling issues

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) & \\
\text { s.t. } & x_{k+1}=G\left(x_{k}, x_{k+1}, u_{k}, p, \xi\right), & k=0 \ldots N-1, \\
& 0 & \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), \\
& k=0 \ldots N-1, \\
& u_{k} \in \Omega, & k=0 \ldots N-1
\end{array}
$$

- More realistic modeling (delays, memory effects, ...)
- Modeling errors
- Random values ξ
- Bounds on variables

Modeling issues

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) & \\
\text { s.t. } & x_{k+1}=G\left(x_{k}, x_{k+1}, u_{k}, p, \xi\right), & k=0 \ldots N-1, \\
& 0 & \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), \\
& k_{k}=0 \ldots N-1, \\
u_{k} & \in \Omega, & k=0 \ldots N-1 .
\end{array}
$$

- More realistic modeling (delays, memory effects, ...)
- Modeling errors
- Random values ξ
- Bounds on variables
- Integer decisions

Modeling issues

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) & \\
\text { s.t. } & x_{k+1} & =G\left(x_{k}, x_{k+1}, u_{k}, p, \xi\right), \\
& 0=0 \ldots N-1, \\
& \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), & k=0 \ldots N-1, \\
& u_{k} \in \Omega, & k=0 \ldots N-1
\end{array}
$$

- More realistic modeling (delays, memory effects, ...)
- Modeling errors
- Random values ξ
- Bounds on variables
- Integer decisions
- $F(\cdot), G(\cdot)$ and $H(\cdot)$ continuously differentiable?

Expressions including if, min, or max are not!

Consistency

- More realistic model only with new study

Consistency

- More realistic model only with new study
- Modelling errors: have to accept and include them

$$
\begin{aligned}
& M A=\min \left(M M, 0.9 M A+0.017 \frac{R S}{M_{1}+10^{-8} M_{2}}\right) \\
& \longrightarrow R S=\epsilon \text { optimal }
\end{aligned}
$$

Consistency

- More realistic model only with new study
- Modelling errors: have to accept and include them $M A=\min \left(M M, 0.9 M A+0.017 \frac{R S}{M_{1}+10^{-8} M_{2}}\right)$
$\longrightarrow R S=\epsilon$ optimal
- Random values ξ
$140 \mathrm{X}=$ RND (-1)

2810 NA=X1 $+($ RND * 100-50)
Random values ξ can be treated as parameters p !

Integer decisions

Decision	$l o w \leq$	u_{k}	$\leq u p$
advertisement	$0 \leq$	$W E$	$\leq \infty$
shirt price	$10 \leq$	$P H$	≤ 100
buy raw material	$0 \leq$	$\Delta R L$	$\leq \infty$
workers 50	$-A_{1} \leq$	ΔA_{1}	$\leq \infty$
workers 100	$-A_{2} \leq$	ΔA_{2}	$\leq \infty$
buy machines 50	$0 \leq$	ΔM_{1}	$\leq \infty$
buy machines 100	$0 \leq$	ΔM_{2}	$\leq \max (0, M A-35) \cdot \infty$
sell machines 50	$0 \leq$	δM_{1}	$\leq M_{1}$
sell machines 100	$0 \leq$	δM_{2}	$\leq M_{2}$
maintenance	$0 \leq$	$R S$	$\leq \infty$
wages	$850 \leq$	$L O$	$\leq \infty$
social spenses	$0 \leq$	$S M$	$\leq \infty$
buy vans	$0 \leq$	$\Delta L W$	$\leq \infty$
sell vans	$0 \leq$	$\delta L W$	$\leq L W$
Choose site		$G L$	$\in\{c, r, v\}$

Bounds

- Optimizer's intuition: no bounds on variables \longrightarrow unbounded solution

Bounds

- Optimizer's intuition: no bounds on variables
\longrightarrow unbounded solution
- Combination of model error and no bound. Demand

$$
N A=a+\left(\min \left(\frac{W E}{5}, N M\right)+100 L W\right) \cdot b
$$

enters into number of shirts sold

$$
V H=\min \left(H L, \frac{5}{4}\left(\frac{N A}{2}+280\right) \cdot 2.7181^{-\frac{P H^{2}}{4250}}\right)
$$

Bounds

- Optimizer's intuition: no bounds on variables
\longrightarrow unbounded solution
- Combination of model error and no bound. Demand

$$
N A=a+\left(\min \left(\frac{W E}{5}, N M\right)+100 L W\right) \cdot b
$$

enters into number of shirts sold

$$
V H=\min \left(H L, \frac{5}{4}\left(\frac{N A}{2}+280\right) \cdot 2.7181^{-\frac{P H^{2}}{4250}}\right)
$$

- Need to include bounds - consistency!

Nondifferentiabilities

- $\min \left(Z M, \frac{1}{2}+\frac{L O-850}{550}+\frac{S M}{800}\right)$

Nondifferentiabilities

- $\min \left(Z M, \frac{1}{2}+\frac{L O-850}{550}+\frac{S M}{800}\right) \longrightarrow \frac{1}{2}+\frac{L O-850}{550}+\frac{S M}{800} \leq Z M$

Nondifferentiabilities

- $\min \left(Z M, \frac{1}{2}+\frac{L O-850}{550}+\frac{S M}{800}\right) \longrightarrow \frac{1}{2}+\frac{L O-850}{550}+\frac{S M}{800} \leq Z M$
- $\min (P M, R L+\Delta R L) \longrightarrow R L+\Delta R L \leq P M$
- $\min \left(H L, \frac{5}{4}\left(\frac{N A}{2}+280\right) \cdot 2.7181^{-\frac{P H^{2}}{4250}}\right)$

$$
\longrightarrow \frac{5}{4}\left(\frac{N A}{2}+280\right) \cdot 2.7181^{-\frac{P H^{2}}{4250}} \leq H L
$$

- $\min \left(\frac{W E}{5}, N M\right) \longrightarrow \frac{W E}{5} \leq N M$
$-\min \left(M M, 0.9 M A+0.017 \frac{R S}{M_{1}+10^{-8} M_{2}}\right) \longrightarrow$

$$
0.9 M A+0.017 \frac{R S}{M_{1}+10^{-8} M_{2}} \leq M M
$$

- $\min \left(A_{1}, M_{1}\right), \min \left(A_{2}, M_{2}\right) \longrightarrow A_{1} \leq M_{1}, A_{2} \leq M_{2}$
- Buy machines (100) only if $M A>35$:
$\longrightarrow 0 \leq \Delta M_{2} \leq \max (0, M A-35) \cdot \infty$
$\longrightarrow M A \geq 36$
$-K A=U K\left(1+\left\{\begin{array}{ll}G Z & \text { if } U K \geq 0 \\ S Z & \text { if } U K<0\end{array}\right)\right.$?

Optimization problem

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) \\
\text { s.t. } & x_{k+1}=G\left(x_{k}, x_{k+1}, u_{k}, p\right), & k=0 \ldots N-1 \\
& 0 & \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), \\
& u_{k} \in 0 \ldots N-1 \\
& \in \Omega, & k=0 \ldots N-1
\end{array}
$$

- 5 continuous control functions

Optimization problem

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) \\
\text { s.t. } & x_{k+1}=G\left(x_{k}, x_{k+1}, u_{k}, p\right), & k=0 \ldots N-1 \\
& 0 & \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), \\
& u_{k} \in 0 \ldots N-1 \\
& \in \Omega, & k=0 \ldots N-1
\end{array}
$$

- 5 continuous control functions
- 10 integer control functions

Optimization problem

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) \\
\text { s.t. } & x_{k+1}=G\left(x_{k}, x_{k+1}, u_{k}, p\right), & k=0 \ldots N-1 \\
& 0 & \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), \\
& u_{k} \in 0 \ldots N-1 \\
& \in \Omega, & k=0 \ldots N-1
\end{array}
$$

- 5 continuous control functions
- 10 integer control functions
- 17 state functions

Optimization problem

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) \\
\text { s.t. } & x_{k+1}=G\left(x_{k}, x_{k+1}, u_{k}, p\right), & k=0 \ldots N-1 \\
& 0 & \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), \\
& u_{k} \in 0 \ldots N-1 \\
& \in \Omega, & k=0 \ldots N-1
\end{array}
$$

- 5 continuous control functions
- 10 integer control functions
- 17 state functions
- No uncertainty

Optimization problem

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) \\
\text { s.t. } & x_{k+1}=G\left(x_{k}, x_{k+1}, u_{k}, p\right), & k=0 \ldots N-1 \\
& 0 & \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), \\
& u_{k} \in 0 \ldots N-1 \\
& \in \Omega, & k=0 \ldots N-1
\end{array}
$$

- 5 continuous control functions
- 10 integer control functions
- 17 state functions
- No uncertainty
- Differentiable

Optimization problem

$$
\begin{array}{lll}
\max _{x, u} & F\left(x_{N}\right) \\
\text { s.t. } & x_{k+1}=G\left(x_{k}, x_{k+1}, u_{k}, p\right), & k=0 \ldots N-1 \\
& 0 & \leq H\left(x_{k}, x_{k+1}, u_{k}, p\right), \\
& u_{k}=0 \ldots N-1 \\
& \in \Omega, & k=0 \ldots N-1
\end{array}
$$

- 5 continuous control functions
- 10 integer control functions
- 17 state functions
- No uncertainty
- Differentiable
- Mixed-integer Nonlinear Program (MINLP)

Intermediate summary

- Go from simple test scenarios to complex scenarios

- Determine month(s) k with bad decisions
- Do not use progress in objective as currently done!
- Compare optimal solutions at time k and $k+1$ as measure
- Optimal solutions = solutions of MINLPs

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Analysis

- For every data set
- For every month from 0 to 11
- Calculate optimal solution for rest of time
- Store objective value at end time

Objective of proband vs. potential (in black)

Further analysis

- Determine WHICH decision was really bad
- Can evaluate the derivative
- No need: already know the optimal solution
- Look at $\left(u^{*}, x^{*}\right)-\left(u^{\mathrm{p}}, x^{\mathrm{p}}\right)$

Further analysis

- Determine WHICH decision was really bad
- Can evaluate the derivative
- No need: already know the optimal solution
- Look at $\left(u^{*}, x^{*}\right)-\left(u^{\mathrm{p}}, x^{\mathrm{p}}\right)$
- Better:
- Solve problem from $k+1$ to N as before
- Add constraints $u_{k, i}=u_{k, i}^{\mathrm{p}}$, calculate Lagrange multipliers
- Shadow prices: how much does decision i at time k cost?

Solver

- Modeling done with AMPL
- Automatization of interfaces
(4) 2

Solver

- Modeling done with AMPL
- Automatization of interfaces
- Structure exploiting interior point method
- IPOPT (Wächter et al.)
- Bonmin (Bonami et al.)

Solver

- Modeling done with AMPL
- Automatization of interfaces
- Structure exploiting interior point method
- IPOPT (Wächter et al.)
- Bonmin (Bonami et al.)
- Needed to solve $80 \cdot 12$ optimization problems
- Runtimes each on notebook
- relaxed: < 1 sec .
- integer: $\approx 3 \mathrm{~min}$.

Solver

- Modeling done with AMPL
- Automatization of interfaces
- Structure exploiting interior point method
- IPOPT (Wächter et al.)
- Bonmin (Bonami et al.)
- Needed to solve $80 \cdot 12$ optimization problems
- Runtimes each on notebook
- relaxed: < 1 sec .
- integer: $\approx 3 \mathrm{~min}$.
- Without hotstarts or advanced numerical techniques
- No multiple local minima found so far

Conclusions

- Computer based micro worlds used to understand human complex problem solving
- Modelled one of the most famous ones (tailorshop) as an optimization problem
- By solving series of optimization problems get valuable additional information
- Important: good modelling, exploiting structure

Outlook

- Apply new analysis tool to interesting test sets
- Apply statistical tools

Outlook

- Apply new analysis tool to interesting test sets
- Apply statistical tools
- Improve numerics
- Warmstarts
- Initial value embedding
- Will allow for online feedback

Outlook

- Apply new analysis tool to interesting test sets
- Apply statistical tools
- Improve numerics
- Warmstarts
- Initial value embedding
- Will allow for online feedback
- Combine analysis with investigation of human abstraction / simplification

Outlook

- Apply new analysis tool to interesting test sets
- Apply statistical tools
- Improve numerics
- Warmstarts
- Initial value embedding
- Will allow for online feedback
- Combine analysis with investigation of human abstraction / simplification
- Cite Joachim Funke: From my point of view this is a sensational breakthrough in psychology.
This new analysis tool will revolutionize the research field!

Thank you very much for your attention!

Questions as complex problems for me?

Add constraint: capital ≥ 0

Add constraint: capital ≥ 0

Control function 13

Sager
Tailorshop - 46

Add constraint: capital \geq min capital of probands

Add constraint: capital \geq min capital of probands

Control function 13

Tailorshop - 48

Add constraint: capital $\geq-10^{10}$

Add constraint: capital $\geq-10^{10}$

(x105) Control function 13

Fix \# of vans to proband's choice

Control function 13

Fix \# of vans to proband's choice

