
Berichte aus dem Psychologischen Institut der Universit�t Bonn

Band 17 (1991) Heft 3
(slightly modified version of the original report)

MacFAUST: Program for constructing
finite automata as instruments in

problem solving research. Manual.
Axel Buchner, Lothar Schmitt,

Joachim Funke, & Beate Nikelowski

ISSN 0931-024X

Contents 2

Contents

SUMMARY 3

PART I: ABOUT THIS MANUAL* 4

I.1 Overview 4

I.2 Explanation of symbols 4

I.3 Necessary preliminary informationÑeven if you don«t normally read manuals 5

I.4 About finite automata 6

I.5 Installation and hardware requirements 7

PART II: HOW TO DESIGN AN AUTOMATON WITH MACFAUST 7

II.1 Upon startup 8

II.2 Planning an example automaton 8

II.3 Creating a new automaton 9

PART III: HOW TO RUN AN EXPERIMENT WITH MACFAUST 1 3

III.1 Planning an example experiment 1 3

III.2 Setting experimental conditions in MacFAUST 1 4

III.3 Running the example experiment 1 5

III.4 Adding knowledge tests to your parameter file 1 7

PART IV: ADVANCED FEATURES OF MACFAUST 2 1

IV.1 Adding and deleting input signals and changing their positions 2 1

IV.2 Adding and deleting output signals 2 4

IV.3 Latent states: Adding an invisible output variable 2 7

IV.4 Process control: Adding time effects 2 7

IV.5 Trying the new automaton while editing 3 0

IV.6 Editing very large state transition matrices 3 2

IV.7 Computing a complexity index for your automaton 3 3

IV.8 Structure of a subject«s data file 3 4

Contents 3

PART V: REFERENCE TO MENU COMMANDS AND OPTIONS 3 7

V.1 The File menu 3 7
New (ÐN) 37
Open (ÐO) 37
Save (ÐS) 37
Experiment (ÐE) 37
Experimental conditions 37
Quit (ÐQ) 37

V.2 The Edit menu 3 7
Input signals (ÐI) 38
Output signals (ÐU) 38
Time effects (ÐT) 38
No. of intervention trials (ÐL) 38
Knowledge tests (ÐD) 38
Display options 38
Tutoring (ÐG) 38

V.3 The Windows menu 3 9
Input labels (Ð1) 39
Output labels (Ð2) 39
State transition matrix (Ð3) 39
Default values (Ð4) 39
Options (Ð5) 39

V.4 The Specials menu 4 0
Complexity (ÐK) 40
About parameter file (ÐA) 40
Export matrix (ÐP) 40
Import matrix (ÐH) 40
Try OUTomaton (ÐR) 40

REFERENCES 4 1

AUTHOR«S ADDRESS 4 2

Summary
This paper presents a manual to MacFAUST (Finite Automata Simulation Tool), a program
that is designed to create and edit discrete dynamic systems. The formal background is based on
the theory of finite state automata. MacFAUST also controls experiments investigating human
learning in interacting with discrete dynamic systems. Several theoretically well-founded
methods of knowledge assessment are implemented, and all data (including a person«s
exploratory behavior) are logged. MacFAUST has proven to be a very useful tool for
psychological research on learning in dynamic task environments in several experiments.
MacFAUST is an easyÐtoÐuse, completely menuÐdriven program that runs on Apple Macintosh
computers. Copies of the program may be obtained from the authors.

I.1 Overview 4

Part I: About this manual*

I.1 Overview
This manual is separated into five parts, the first part containing inevitable information about the
program and the manual, and the following two parts explaining how MacFAUST operates
using a concrete example. The last two parts are Òmore abstractÓ in the sense that they only
describe single features of the program without giving detailed examples.

Part I describes the symbols used throughout the manual, some necessary preliminary
information for those who would like to play with the program before they read
the manual, and a few comments about the purpose of the program and its
theoretical background.

Part II describes in a tutorial way how one can use MacFAUST to design an automaton.
We will show how one can construct an example automaton. At the end of this
chapter you will be familiar with the basics of constructing automata with
MacFAUST. You can then go on to learn how to run an experiment in Part III of
the manual.

Part III describes in a tutorial way how one can use MacFAUST to design and run an
experiment. We will show how one can set up an example experiment. At the
end of this chapter you will be familiar with the basics of running experiments
with MacFAUST. To design sophisticated automata and make use of the full
capabilities of MacFAUST you should consult chapters in Part III.

Part IV describes additional features of MacFAUST such as how you try out your
automaton while editing it (this is a very important feature), how you edit large
state transition matrices, or how to make changes to an existing automaton. This
chapter is for those who are already somewhat familiar with MacFAUST.

Part V describes the menus MacFAUST offers in the order in which they appear on the
screen. Use this section as a reference to look up details that you will inevitably
have forgotten as time goes by.

* The development of MacFAUST and this manual have been supported by a grant from the Commission of the
European Community (ESPRIT Basic Research Action #3219ÐKAUDYTE).

I.2 Explanation of symbols
Before you use the manual you should know what the following symbols and typefaces mean:

This is the standard mouse pointer in MacFAUST. All descriptions of your input
are symbolized by this icon.

I.2 Explanation of symbols 5

This symbol appears whenever we describe the effects of your
changes and the feedback from MacFAUST. In addition, we use this
rather ÒtechnicalÓ font to distinguish this type of information from the
rest.

 Comments are pieces of information that are not important at a particular occasion but may be
interesting or give hints on related topics. They are displayed in this smaller font size. You
may skip them if you want.

Menu commands appear in Chicago which is the font that is used on the
Macintosh to display them.

OK This symbol usually indicates that you must click a Push button to confirm a
choice.

This symbol is used to indicate that a particular choice may be made by clicking
into a Radio button. These buttons indicate that you have ÒeitherÑorÓ type
choice.

This symbol is used to indicate that a particular choice may be made by clicking
into a Check button. These buttons indicate that you can combine ÒmultipleÓ
choices.

I.3 Necessary preliminary information—even if you don´t normally
read manuals

Many people like to start playing with a new program to see how it works rather than reading
manuals, the latter of which often being a tedious if not painful experience. Although we have
invested considerable efforts to make this manual as easy to use as possible we of course do
understand that some people still will prefer to learn the hard wayÑi.e. from experience. In any
case you should at least know the following details:

1. Creating a new automaton means that you create a Òparameter fileÓ. This file
contains all the information about your automaton. Even if you run an
experiment, almost everything you have specified for a particular experiment is
stored in this file.

2. MacFAUST is a completely menu driven program, so at any point in time the
menus will tell you what you can do. Commands that are unavailable will appear
dimmed. There is one exception to this rule: Some of the experimental conditions
are ÒhiddenÓ. See Part III if you need to know what they are.

3. If you choose Save from the File menu your data will be written to the
parameter file. Note that in order to get your automaton ready for usage (e.g., in
an experiment) a few extra figures have to be computed (e.g., the distance of
each state from the goal state). This is done when you choose Save. However,
the necessary computational procedures may be sensitive to slight inaccuracies in

I.3 Necessary preliminary information 6

your automaton«s so-called state transition matrix. If this happens, MacFAUST
displays a message explaining the type of error that occured. Next, a file dialog
appears so you can save your data to a file. Note that this file will contain not
enough information to use the automaton. Open it and try to fix the errors in the
matrix, then save it again.

4. You can try out how your automaton works any time by choosing Try
OUTomaton from the Specials menu, but you must save your data in a
parameter file first. The program forces you to do that and then computes the
extra figures mentioned above. If you are not quite sure you really want to save
the last changes you have made, simply choose a different name for the file you
save these data in.

5. Normally, terminating the program is possible by choosing Quit from the File
menu. However, when you run an experiment you usually have the menu turned
off to avoid that subjects do things they are not supposed to do. There is an
Òemergency breakÓ to stop the program even in this situation. Type 1- M to
switch on the menu, then terminate as usual. The subject«s data will be saved to
the file you specified at the beginning of the experiment.

If you want to explore MacFAUST«s capabilities by yourself you can now start to explore the
discrete system. For those who do not have that much time we have written this manual and
recommend that you proceed reading the next chapters.

I.4 About finite automata
MacFAUST has been designed as a tool for researchers interested in how people learn and later
use their knowledge in interacting with complex dynamic systems. There is a large diversity of
systems currently used in this research domain (see the recent review by Funke, 1991). The
problem with most of these systems is that they do not have a homogeneous theoretical
background to make them comparable or to allow researchers to manipulate precisely defined
properties of the task.
Also, many researchers use diagnostic procedures that are idiosyncratic to the task and have no
or no clear connection to the ÒclassicalÓ inventory of cognitive psychological methods of
knowledge assessment. There are a number of other problems that have been outlined
elsewhere (Buchner, & Funke, 1990, 1993; Funke, & Buchner, 1992) and will not be repeated
here. The situation is different with the discrete dynamic systems used here. These systems
have the following (plus some more) advantages:

¥ They are based on a homogeneous formal background. More precisely, the
theory of finite automata is used to describe their properties (e.g., Albert, &
Ottmann, 1983; Hopcroft, & Ullmann, 1979; Salomaa, 1985).

¥ They make use of diagnostic measures that have a clear connection to ÒclassicalÓ
measures of knowledge within experimental psychology: recognition tests and
verification tasks.

¥ They provide a criterion for optimal performance. Therefore, control
performance can be assessed without complication. At any given state of the

I.4 About finite automata 7

system it is possible to determine if there is a sequence of interventions that leads
to a defined goals state and how many interventions are required as a minimum.

For more details you are again refered to the papers mentioned above. Having a homogeneous
formal background for describing many different dynamic systems makes it possible to create
classes of formally well-defined systems that can easily be related to each other. MacFAUST is
a tool to do exactly that. In other words, MacFAUST is an all-purpose discrete system
generator. New discrete systems may be created, and existing ones may be modified
according to the researcher«s needs. This manual describes how to do that.
In addition, MacFAUST can control experiments exploring the systems that have been created
by the program. This manual describes how to do that also. Subjects« data are recorded and
stored in a text file so they can be conveniently used for data analysis. However, the manual
cannot describe all the details of what possibilities the researcher has in analyzing the data
produced by MacFAUST. For more details the reader is therefore again refered to existing
literature describing experiments with MacFAUST (Buchner, & Funke, 1991, 1993; Buchner,
Funke, Schmitt, & Nikelowski, 1990).
A copy of MacFAUST may be obtained from the authors for research purposes only.
Commercial distribution is prohibited. The authors« address for requesting MacFAUST can be
found on the last page of this manual.

I.5 Installation and hardware requirements
To install MacFAUST, simply copy the program onto your hard disk. No further installation
procedure is required. The program needs a minimum of 2 MB RAM and runs under System
Version 6.0.1 or higher. To our knowledge MacFAUST runs on any Macintosh (inclufing
PowerPC).

✏

Although we have invested a considerable amount of work into the development of
MacFAUST we can, of course, not guarantee that the program does not contain any
bugs or malfunctions. We cannot take responsibility for any damage that might occur
when the program is used. Also, note that future versions of MacFAUST might
perform slightly differently.

Part II: How to design an automaton with
MacFAUST

MacFAUST is a completely menu driven program, so at any point in time the menus will tell
you what you can do. Commands that are unavailable will appear dimmed. There is one
exception to this rule: Some of the experimental conditions are ÒhiddenÓ. See Part III if you
need to know what they are.
Before you can run an experiment you first have to design a new automaton which is equal to
creating a parameter file that contains all the information about the automaton. This is what we
will do in the present section of the manual in which we show how to construct a small example
automaton for illustrative purposes.

II.1 Upon startup 8

II.1 Upon startup
Whenever you start the MacFAUST the screen displays the following message:

At this point the File menu offers the following choices:

New to construct a new parameter file.

Open to edit an existing parameter file.

Save to write your parameters to the parameter file. Note, however, that saving your
data also implies that MacFAUST computes a few additional figures when saving.

Experiment to run an experiment (you need a valid parameter file to run an
experiment).

Experimental conditions to declare the number and nature of the experimental
conditions you wish to realize.

Quit to exit the program.

II.2 Planning an example automaton
The first thing you do when you design a new automaton is to figure out how many input
buttons and how many states it should have. This is the first thing the program wants to know.

KNOWLEDGE
ACQUISITION &
USE IN
DYNAMIC
TASK
ENVIRONMENTS

ESPRIT PROJEKT KAUDYTE
Basic Research Action

#3219

Bonn University
R�merstra§e 164
D-5300 Bonn
F.R. of Germany

Axel Buchner
Joachim Funke
Beate Nikelowski
Lothar Schmitt

MacFAUST

Planning an example automaton 9

Normally you will use the good old paper & pencil method to construct a rough outline of your
new automaton. You should try to do that job carefully. Although MacFAUST allows you to
do even drastic changes to your automaton at later occasions it means extra work so it should
be avoided.
 Let us plan and then create a simple automaton to illustrate how one can go about to achieve
this goal. The automaton shall mimic a simplified ticket vending machine. We need to decide on

¥ the number of input variables and their levels (the input signals),

¥ the number of output variables and their levels (the output signals),

¥ the names for the input signals (the ÒbuttonsÓ of the automaton),

¥ the names for the output signals (the possible ÒdisplaysÓ of the automaton),

¥ the state transition matrix (it contains figures that indicate to which state the
automaton will move as a consequence of a given current state and a user
intervention).

We need to insert money. Let us assume the machine accepts 1 and 2 ECU coins. We must pull
something to get the ticket, and we must have an ÒejectÓ option to get our money back in case
we change our mind. This makes a total of four input buttons. In terms of a state transition
matrix the input buttons are the columns.
As outputs we want the automaton to display the money we inserted (ÒemptyÓ, Òone ECUÓ,
Òtwo ECUÓ, ÒenoughÓ, Òtoo muchÓ) and we want it to tell us when we have been successful in
operating it (ÒGOALÓ). This makes a total of six output signals. In terms of a state transition
matrix the output buttons are the rows.
Look at the following matrix. This state transition matrix represents what the simple automaton
we want to create should look like.

Input signals
1 2 3 4

States 1 ECU 2 ECU PULL EJECT
1: empty 2 3 1 1
2: one ECU 3 4 2 1
3: two ECU 4 5 3 1
4: enough 5 5 6 1
5: too much 5 5 5 1
6: *GOAL* 2 3 1 1

This is how it works: First, we are in State 1 (ÒemptyÓ). We insert Ò1 ECUÓ which results in
State 2 (Òone ECUÓ). Next we insert Ò2 ECUÓ which results in State 5 (ÒenoughÓ). Finally,
we ÒPULLÓ and reach the ÒGOALÓ.

II.3 Creating a new automaton
Let us now create this automaton:

 Choose New from the File menu.

A dialog appears on the screen. It displays the No. of input and output
signals. As you can see, the default value for each is Ò1Ó.

Creating a new automaton 10

The number of input and the number of the output variables may be changed using the scroll-bars. You
may choose up to five different input and output variables for an automaton. (In our example we leave
the default values unchanged).

 Click Buttons of all lines belong to the same input variable.

 Click OK .

A dialog appears on the screen displaying the levels of each input and
output variable. As you can see, the default value for each is 2.

 To enter the number of levels of the input variable (4 in our example) click on the scroll
bar next to the number of input variables.

According to the position of your mouse click on the scroll bar the
number of levels of the input variable will be changed.

 To enter the number of levels of the output variable (6 in our example) click on the scroll
bar next to the number of output variables.

According to the position of your mouse click on the scroll bar the
number of levels of the output variable will be changed.

 Click OK .

Next you see what your automaton looks like: The standard user
interface that the program produces. The interface you see now is the
same as the interface subjects interact with during an experiment.

Very nice, isn«t it? However, the names of your input and output variables look strange. They
are simply what the program puts in there by default.
You want to change these names:

 Click in the leftmost input button.

A new dialog appears on the screen.

 Enter a name. In this case you should enter Ò1 ECUÓ.

 Click OK .

Creating a new automaton 11

 Repeat this until you have named all of your input buttons according to the state
transition matrix displayed above (i.e., ÒA2Ó ➝ Ò2 ECUÓ, ÒA3Ó ➝ ÒPULLÓ, ÒA4Ó ➝
ÒEJECTÓ).

 Click in the white part of the output field (it currently displays ÒV1Ó).

You may switch to the same input-mask simply by choosing ÒOutput labelsÓ from the ÒWindowsÓ
menu. In the gray part of the output field you can read the name of the output variable. Click on it to
edit its name).

A list of the names of all output variables and their levels appears on
the screen in the ÒLabelsÓ column. One of the names is ÒV1Ó that you
clicked on.

 Click on the first one of these names in the ÒLabelsÓ column.

A new dialog appears on the screen.

 Enter a name. In this case you should enter ÒemptyÓ.

 Repeat this procedure for all your output variable levels according to our state transition
matrix (i.e., ÒV2Ó ➝ Òone ECUÓ, ÒV3Ó ➝ Òtwo ECUÓ, ÒV4Ó ➝ ÒenoughÓ ÒV5Ó ➝
Òtoo muchÓ ÒV4Ó ➝ Ò*GOAL*Ó).

On the left side of this window you can find the ÒdistractorÓ column. The procedure of entering labels
here is identical to the ÒLabelsÓ column. These distractors may later be used for the verification task (see
V.1 ÒThe Windows menuÓ: ÒOptionsÓ). At this point you should not change them.

 Click OK .

Then you will return to the standard user interface that you already
know. It will display ÒemptyÓ as the initial state.

Now everything is done to tell the program what the automaton will look like. To tell the
program how to operate you now must edit the state transition matrix.

 Choose State transition matrix from the Window menu.

A list of all output signals appears on the left side of the screen, and a
list of all input signals appears on the right side of the screen.

 Click on one of the output signals. For instance, choose ÒNo.:1 emptyÓ.

The output signal you clicked on remains inverted until an input signal
is clicked.

Creating a new automaton 12

 Click on one of the input signals. For instance, choose ÒNo.:1 1 ECUÓ.

A new dialog appears on the screen.

 Enter the number of the next state the automaton should move to if this situation occurs.
For instance, when you will later use the automaton, and you will be in State 1
(ÒemptyÓ), clicking Input signal 1 (Ò1 ECUÓ) should cause the automaton to display the
output signal of State 2 (Ò1 ECUÓ). Therefore, enter Ò2Ó.

Input signal
1 2 3 4

States 1 ECU 2 ECU PULL EJECT
1: empty 2 3 1 1
2: one ECU 3 4 2 1
3: two ECU 4 5 3 1
4: enough 5 5 6 1
5: too much 5 5 5 1
6: *GOAL* 2 3 1 1

 Repeat this until you have entered all state transitions according to our state transition
matrix. (Here is a hint: You need not edit all 24 cells of the state transition matrix since
the default value Ò1Ó that has been entered automatically is correct for 8 cells).

 Click OK .

A new dialog appears on the screen.

You may switch to the same dialog by choosing ÒDefault valuesÓ from the ÒWindowsÓ menu.

 Enter the number of the initial state (Ò1Ó) and the number of the goal state (Ò6Ó).

You must always make sure that your automaton has a goal state and an initial state. In saving,
MacFAUST needs these data to compute a number of figures needed for actually ÒrunningÓ your
automaton (e.g., the distance of each state from the goal state).

 Click OK .

Then you will return to the standard user interface.

Congratulations! You have designed your first automaton. The only thing to do is to save the
automaton to a file.

 Choose Save from the File menu.

The program comes up with a dialog to ask for some additional
information to be stored in the parameter file. This gives you the
possibility to enter information that will be saved with the automaton

Creating a new automaton 13

such as the name of the person who designed the automaton, the
date, and some additional comments that may be useful if you are
working with different versions of an automaton.

 Click OK to save any changes you have made, but click Skip to simply go on and
ignore changes you may have made. In the latter case, the original information will be
saved.

The program comes up with a dialog to ask for the filename.

 Enter the filename. For instance, enter ÒMATRIX01Ó.

 Click Save .

In Part IV that follows later we describe how you can test and change the automaton you just
saved. Before skipping to that part of the manual, however, we recommend that read how to
design an experiment with MacFAUST. This will facilitate the understanding of concepts used
later on in the manual.

Part III: How to run an experiment with
MacFAUST

Suppose you have designed your automaton and you now want to prepare an experiment. This
section of the manual will provide you with an example of how to do this.

III.1 Planning an example experiment
Like in creating an automaton, running an experiment requires some a priori decisions. We
need to decide on the following topics:

¥ The number of different experimental conditions and their nature (i.e., supports
and options).

¥ The number of intervention trials you want for your subjects to explore the
automaton.

¥ The type of diagnostic procedure you wish to use to assess your subjects«
knowledge, and the number of knowledge probes you want to have for each
method.

¥ The number of ÒblocksÓ (cycles of phases with intervention trials and diagnostic
phases) you want your experiments to last.

Setting experimental conditions in MacFAUST 14

III.2 Setting experimental conditions in MacFAUST
For our example we decide to specify two conditions. Subjects run under the first condition
will be supplied with two different types of external support. One device tells them their current
Òdistance from the goal-stateÓ, and the second device is an Òexternal memoryÓ that appears
automatically and displays miniature versions of past system states. Also, we want the
automaton to automatically move to the initial state if a subject has reached the goal state.
Subjects run under the second condition will have available as support an Òexternal memoryÓ
which is ÒdynamicÓ in the sense that subjects can use it to make any past state of the system
their next present state. All other options will be equal to the first condition.

At this point we will not consider other options that are available for designing experimental
manipulations. For details, see V.1 ÒThe Windows menuÓ: ÒOptionsÓ.

Let us enter our specifications:

 Choose Experimental conditions from the File menu.

A dialog appears which is divided into two halves: on the left side you
choose the number of conditions you want, on the right side you
specify what each condition comprises.

 To enter the number of different conditions select one of the numbers displayed on the
left side of the dialog. For instance, select

 1 2 3 4 5

 Condition 1 has already been selected. Choose your setting by selecting

 Support: Distance from goal-state

 Support: External memory (6 cycles/dyn.)

 Option: Reset at goal state

 Select Condition 2.

 Choose your setting by selecting

 Support: External memory (6 cycles/static)

 Option: Reset at goal state

 Choose the language you need (German or English). This will determine
the language that is used for the instructions given to your subjects during the
knowledge tests.

 Click Save to confirm your choice.

Setting experimental conditions in MacFAUST 15

The initial screen will appear again. Note that the experimental
conditions are not stored in the parameter file. Instead, MacFAUST
preserves this information. As a result, you can use the same
automaton (i.e., the same parameter file) in different experimental
conditions.

III.3 Running the example experiment

 Let us try what the experiment would be like. Choose Experiment from the File
menu.

Now you are asked for information that identifies the to-be-recorded
data set.

 You need to enter the name, age, and sex of your subject and the experimental
condition. Note that you must enter these data before you can go on. You can also
choose whether or not you want the menu to be available during the experiment. You
will notice that initially the menu bar is empty. If you choose Include menus
they become visible.

Normally you will not select this option for a real experimental situation to avoid that your subjects
play with things that have not been made for them. There is, however, an Òemergency breakÓ to stop the
program even in this situation. Type 1 - M to switch on the menu, then terminate as usual. The
subject«s data will be saved to the file you specified at the beginning of the experiment.

 Click OK (you must have entered all the required data!) .

You are then asked to provide a file name for the subject«s data.

By default, this name is composed of the subject«s name plus her/his age, but you may change it to
anything you like. This file is a text file so you can edit it with any word processing facility and access
it easily with your own software to evaluate experimental data. To learn more about the format of the
data in this file, see the ÒStructure of a subject«s data fileÓ chapter (IV.8 in this manual).

 Click Save .

A dialog appears on the screen from which you can choose your
matrix.

 Click Matrix01 if ÒMATRIX01Ó is the name of you parameter file. Otherwise
choose
 DifferentÊfile to bring up the standard file dialog.

Running the example experiment 16

The next dialog asks you to wait for MacFAUST to be done with
preparing the experiment.

Now you are in the experiment. On the left side of the screen you see
the four input buttons, on the other side you see the output field you
are already familiar with. At the bottom you find two extra buttons
labeled: ÒGoal stateÓ and ÒExternal memoryÓ.

 Now you can start to explore the automaton. Click on one of the input buttons and
observe the change in the output field on the right side. After a few inputs you may want
to have a look at your supports: Let«s first try the GoalÊdistance .

A window appears displaying several lines and circles on the screen.
The lines symbolize the steps you need to reach the goal; the circles
stand for your past interventions, the top most line represents the goal
state. You can observe your improvements (and your failures) in your
attempts to reach the goal state.

 Click on one of the circles to see which state you were in at that point. Then click into
the window«s close box in the upper left corner to close it.

 Now click on PastÊinterventions to try the external memory.

A window appears displaying the last six past system states.

 Use the scroll bars at the top of the memory window to see more past states (if there are
any).You could now click into the window«s close box in the upper left corner to close
it. Let us instead try out the ÒdynamicÒ option of the external memory. Click on one of
the miniature versions of the past states to make this particular state the next present
state.

You will be asked to confirm your decision.

 Click OK .

The standard user interface will reappear displaying the selected
state.

 To try the effects for your second condition simply choose Quit experiment from
the File menu. Your data will be saved in the text file you specified at the beginning of

Running the example experiment 17

the experiment. To learn about the format of the data in this file, see the ÒStructure of a
subject«s data fileÓ chapter (IV.8 in this manual). Choose Experiment from the
File menu and proceed as before except that this time you specify Condition 2.

Feel free to try different experimental conditions on your new automaton to find out how they
work (you can use this opportunity to play the subject who tries to find out how a complex
dynamic environment worksÉ).
Here is an extra piece of information. Whenever you are running an experiment with the menus
turned on, all built-in external support systems are available in the Information menu (this
is one reason as to why you would want to turn off the menus during a real experiment).

 Choose Distance from goal state to see how far the current state is from the
goals state.

 Choose Past states - static to see the external memory in its ÒstaticÓ version.

 Choose PastÊstatesÊ-Êdynamic to see the external memory in its ÒdynamicÓ
version.

 Choose System states to see how many different states your automaton has.
Every state that you have already encountered during your exploration trials is marked
by a check symbol (Ö).

Now quit the experiment (type 1ÐM if the menu had been turned off in order to turn it back
on) and learn more about knowledge tests in the next chapter.

III.4 Adding knowledge tests to your parameter file
In the example experiment we did not get any diagnostic information because we have failed to
specify which knowledge tests to include. In this case MacFAUST simply takes some default
values to be able to run the experiment. We will now deliberately decide on

¥ the number of ÒblocksÓ (cycles of phases with intervention trials and diagnostic
phases),

¥ the number of intervention trials for each block,

¥ the types of knowledge tests after the blocks of intervention trials,

¥ the order of different knowledge tests after the blocks of intervention trials,

¥ the number of knowledge probes for each type of knowledge test,

¥ the state transitions probed for in each type of knowledge test.

 Choose Open from the File menu and open your example automaton (ÒMatrix01Ó if
you followed the example in Part II of this manual).

 Choose No. of intervention trials from the Edit menu.

Adding knowledge tests to your parameter file 18

A window appears that gives you control over the entire course of the
experiment with respect to the intervention trials. You may select
between 1 and 5 different blocks of intervention trials. Each block may
consist of 2 to 200 trials.

 Select 3. block of intervention trials.

 Enter Ê Ê2 0 Ê Ê in the editable fields of each of the blocks 1 to 3.

 Click Add to see the total number of intervention trials (this figure should now be
Ò60Ó).

 Click Save .

We are back to the automaton. The logical next step is to select the
diagnostic procedures or Òknowledge testsÓ that shall be applied
between blocks of intervention trials.

 Choose Knowledge tests from the Edit menu.

A window appears that gives you control over the entire course of the
experiment with respect to the knowledge tests.

 Select Experiment with knowledge tests.

If you click the alternative option the knowledge tests are not included in an experiment. This option is
particularly useful if you have already specified a number of knowledge tests and do not want to loose
this information. As soon as you decide to have an experiment with the knowledge tests included the
previous knowledge tests are again available. Once specified, this information is never lost.

 In principal, you can after each block of intervention trials apply a different set of
knowledge tests. However, for the present purpose it will simplify matters extremely if
we select

 same kinds of tests each phase
 same sequence of tests each phase
 same # of items per test each phase
 same set of items per test each phase

You may wonder why it should be useful to have different knowledge tests after each block of
intervention trials at all. One situation in which this seems useful is if you want to have a large
knowledge test at the end of the experiment and only a few items between blocks to give subjects a
chance to practice the procedure. In this case, of course, you cannot control the process of knowledge
acquisition.

Adding knowledge tests to your parameter file 19

 Click Continue .

The next window is already familiar.

 Select Knowledge tests for the first two blocks of intervention trials and
Save the selections.

Note that we have selected three blocks of intervention trials but only two knowledge tests. Thus, after
the final block of trials there will be no knowledge tests. If you want to include any extra knowledge
tests at the end of the experiment you must also select the knowledge test item for the third block.

MacFAUST then asks you to specify the kinds of items you want to
include. There are four different types of knowledge tests, three
recognition tasks and one verification task.

In the recognition tasks, two elements of a state transition matrix are
presented, and the missing element must be selected from a list of
alternatives by subjects. The recognition items may be ÒprognosticÓ
(Type 1: the next state must be recognized), ÒinterpolatedÓ (Type 2: the
intervention must be recognized), or ÒretrognosticÓ (Type 3: the
preceding state must be recognized) in nature.

In the verification task an entire state transition is presented, and it
must be judged whether or not it is correct for the given automaton.
The probed transitions are taken from subjects« prior intervention trials
to guarantee that they have been explored. The transitions may be
wrong in two ways: First, the false element(s) of the transition may
nevertheless belong to the elements of the automaton (i.e., it is
ÒincorrectÓ). It is then randomly selected from the remaining labels that
indicate a different element. Second, MacFAUST may randomly select
the false element(s) from the set of distractor labels (i.e., it is Òincorrect
with distractorÓ). In both cases MacFAUST selects the wrong elements
for the next state given a previous state and an intervention to make
the state transition impossible for the given automaton.

 Select Recognition 1 and Verification test for our example experi-
ment, then click OK .

The next dialog asks you to specify the order in which the different
tests will be presented after the blocks of trials.

 Click PositionÊ1 and PositionÊ2 and notice that the verification test and the
recognition 1 test now appear in reversed order.

Adding knowledge tests to your parameter file 20

 Click OK .

The next dialog asks you to specify the number of items for each test
(if, like in our example, you choose to have the same configuration of
tests after each block of intervention trials MacFAUST will ask you to
specify the number of items for ÒPhaseÓ 1; otherwise this question is
repeated for all phases).

 Enter Ê Ê 2 Ê Ê in the editable field for the verification test and click OK .

 Enter Ê Ê 2 Ê Ê in the editable field for the recognition 1 test and click OK .

The next dialog asks you to specify the state transitions that will be
probed for in the ÒRecognition 1Ó task. We have selected 2 recognition
items and these items are displayed in the dialog. The dialog also
displays the ÓOutputÓ (previous system state) and ÒInputÓ (intervention)
selected for the state transition of that item (initially, both values are set
to Ò1Ó).

If you had specified more that 10 items for this test they would have been displayed in more than one
set. In this situation, the dialog displays additional button that you must click to get to the next set of
items (or back to the previous set) to edit them.

 Click Item 1 (or simply type in the number of the item you wish to select) and
select the system state (ÒOutput signalÓ) and the intervention (ÒInput signalÓ) using the
vertical scroll bars. Click on ÒOutput NoÓ or ÒInput NoÓ to see the verbal labels of a
particular state transition (MacFAUST automatically finds the missing element of the
state transition; this is true for all types of recognition items). Repeat this with the
second item. Click OK when you are done with editing these items.

Note that for any type of recognition itemÑprognostic (Ó1Ó), interpolated (Ò2Ó), and retrognostic (Ò3Ó)Ñ
MacFAUST asks you to specify only the previous state (ÒOutputÓ) and the intervention (ÒInputÓ). The
program automatically computes the next state from this information. During an experiment, however,
MacFAUST will correctly display the two given elements of the transition according to the type of
recognition item you selected, and it will correctly ask for the missing element.

The next dialog the asks you to specify the trials from which
MacFAUST should select the state transitions for the verification task.
In our example, 2 items will be displayed. The dialog also shows the
trial which has been selected for each item (initially Ò1Ó), and the status
of each item (initially ÒcorrectÓ).

 Click Item 1 (or simply type in the number of the item you wish to select) and
select the trial using the scroll bars. Then select one of the following alternatives:

 correct or

Adding knowledge tests to your parameter file 21

 incorrect or

 incorrect with distractor.

 Click OK . Repeat this for the second item.

If you had specified more that 10 items for this test they would have been displayed in more than one
set. In this situation, the dialog displays additional button that you must click to get to the next set of
items (or back to the previous set) to edit them.

The automaton will then reappear with the standard user interface.
You have now specified the diagnostic items.

 Choose Save from the File menu to append the diagnostic information to your
parameter file.

The next time you choose Knowledge tests from the Edit menu you will be able to edit
your diagnostic items. Perhaps you want to try what an experiment with knowledge tests looks
like? Choose Experiment from the File menu and proceed as described in the beginning of
the ÒRunning the example experimentÓ section. All your dataÑincluding that concerning the
knowledge testsÑwill be saved to the same text file. To learn about the format of the data in this
file, see the ÒStructure of a subject«s data fileÓ chapter in Part IV.8 of this manual.

It is easy to imagine that things can get very complicated if you leave

 same kinds of tests each phase
 same sequence of tests each phase
 same # of items per test each phase
 same set of items per test each phase

all unselected. In this case you will be asked to specify all of these parameters for each of the
diagnostic phases following the blocks of intervention trials. We recommend that you do
this only after some experience with specifying knowledge tests to avoid getting
lost.

Part IV: Advanced features of MacFAUST
This chapter assumes that you have already some knowledge about MacFAUST (e.g., you
have worked through Parts II and III of this manual). You should be familiar with basic
concepts like Òinput variablesÒ, Òoutput variablesÓ, and the Òstate transition matrixÓ. In order to
understand the last chapter of the ÒStructure of a subject«s data fileÓ you should be familiar with
the knowledge tests introduced in Part III of the manual.

IV.1 Adding and deleting input signals and changing their
positions

Even if you have followed our recommendations and thought carefully about your new
automaton you will sometimes be dissatisfied with the results of your work. For instance,
considering our example automaton (the ticket vending machine) from Part II of this manual,
the idea might cross our minds that it would be nice to have a machine that also accepted 3 ECU

Adding and deleting input signals and changing their positions 22

coins. The automaton currently has one input variable with four levels. Thus, we want to add a
fifth level.

 Open your parameter file and choose Input signals from the Edit menu.

 In the ÒEdit input variablesÓ dialog click AddÊvariableÊlevel .

The standard user interface appears with the background shaded
gray. This is to indicate that you are about to make major changes to
your automaton.

 Click on one of the automaton«s buttons. The new button will be inserted on the left side
of the button you selected. Select the ÒPULLÓ button. When it blinks, click OK .

The standard user interface appears and the new button has been
inserted. By default, all state transitions associated with the new button
will be set to Ò1Ó. Thus, the state transition matrix will look like this:

Input signal
1 2 3 4 5

States 1 ECU 2 ECU NEW PULL EJECT
1: empty 2 3 1 1 1
2: one ECU 3 4 1 2 1
3: two ECU 4 5 1 3 1
4: enough 5 5 1 6 1
5: too much 5 5 1 5 1
6: *GOAL* 2 3 1 1 1

 Choose State transition matrix from the Windows menu to fill in the correct
figures (from the top to the bottom of the ÒNEWÓ column in the matrix above the correct
figures are Ò4Ó, Ò5Ó, Ò5Ó, Ò5Ó, Ò5Ó, and Ò4Ó).

 Then click on the input buttons to edit their labels and change these from the default
ÒnewÓ to Ò3 ECUÓ for the sake of having a consistent example automaton.

If you wish to try instantaneously how your automaton works after these changes see IV.5
ÒTrying the new automaton while editingÓ.

You can change the positions of the buttons on the screen. To achieve this you must

 Choose Input signals from the Edit menu.

 In the ÒEdit input variablesÓ dialog click ChangeÊpositions .

Adding and deleting input signals and changing their positions 23

The standard user interface appears with the background shaded
gray. This is to indicate that you are about to make major changes to
your automaton.

 Click on the two buttons which you want to interchange. When they both blink, click
OK .

A new dialog asks you about the details of the changes to be made.

 Select :
Change functions to interchange only the way the two buttons work (this is

equal to interchanging the columns of the state transition matrices associated with
the two buttons).

Change labels to interchange only the physical labels of the two buttons (this
will leave the columns of the state transition matrices unchanged).

Change functions and labels to interchange the two buttons completely.

Click OK .

The standard user interface appears and the two buttons have been
interchanged.

Note that in order to follow the examples given in this manual you need to revert (or not save)
any changes you have made in this section!

You can also add an entire input variable. In this case, a subject would have to select two
buttonsÑeach button belonging to a different input variableÑand then click ÒOKÓ (to learn
about automata with and without ÒOKÓ buttons, see V.3 ÒThe Windows menuÓ:ÒOptionsÓ). To
add an entire input variable you must

 Choose Input signals from the Edit menu.

 In the ÒEdit input variablesÓ dialog click AddÊentireÊvariable .

The standard user interface appears and one row with two new
buttons has been inserted. By default, all state transitions associated
with the new buttons will be set to Ò1Ó.

Note that in order to follow the examples given in this manual you need to revert (or not save)
any changes you have made in this section!

You may also want to remove an input variable from your automaton. This is done in a
stepwise manner. You actually delete only levels of input variables. However, if an input
variable has only two levels removing the second of these two levels will imply that the entire

Adding and deleting input signals and changing their positions 24

variable will be removed (this should seem plausible since an automaton with only one input
button would not make much sense; it would have to be pressed at each intervention).

 Choose Input signals from the Edit menu.

 In the ÒEdit input variablesÓ dialog click RemoveÊvariableÊlevel .

The standard user interface appears with the background shaded
gray. This is to indicate that you are about to make major changes to
your automaton.

 Click on the button you want to remove. When it blinks, click OK .

The standard user interface appears and the selected button has been
removed. If the input variable had only two levels, the entire variable
has been removed.

Note that in order to follow the examples given in this manual you need to revert (or not save)
any changes you have made in this section!

IV.2 Adding and deleting output signals
As mentioned in the previous chapter, you will sometimes be dissatisfied with an automaton
you created. For instance, considering the modification that you did to your example automaton
in the previous chapter you will realize that a machine that accepts Ò3 ECUÓ coins is quite
uninteresting as long as the price for the ticket is only 3 ECUÑtwo clicks and you have it!
Therefore, we will assume that we had a price increase lately, and the cost for a ticket has gone
up to 4 ECU (this is what we called ÒenoughÓ). The automaton currently has one output
variable with six levels. Thus, we want to add a seventh level.

 Choose Output signals from the Edit menu.

 In the ÒEdit output variablesÓ dialog click AddÊvariableÊlevel .
 If you have more that one output variable , a dialog will ask you which variable you wish to edit.
Click on the hand that points to the variable you wish to edit.

A window appears that is similar to the one you see when you edit the
labels of your output signals but this time the background is shaded
gray. This is to indicate that you are about to make major changes to
your automaton.

 Click on one of the bar icons for the output signals. The new output signal will be
inserted below the bar icon you selected. Select the Ò2 ECUÓ bar icon (it will blink).
Click OK .

If you click ÒOKÓ with no bar icon selected this will leave the automaton unchanged.

Adding and deleting output signals 25

The standard user interface appears and the new signal has been
inserted. You cannot see it now unless you choose ÒOutput signalsÓ
from the ÒWindowsÓ menu. By default, all state transitions associated
with the new signal will be set to Ò1Ó and MacFAUST compensates for
the shifts in your matrix by increasing the figures in all relevant other
cells by the appropriate amount. Thus, the expanded state transition
matrix of the ticket vending machine will look like this:

Input signal
1 2 3 4 5

States 1 ECU 2 ECU NEW PULL EJECT
1: empty 2 3 5 1 1
2: one ECU 3 4 6 2 1
3: two ECU 5 5 6 3 1
4: NEW 1 1 1 1 1
5: enough 6 6 6 7 1
6: too much 6 6 6 6 1
7: *GOAL* 2 3 5 1 1

Note, however, that although MacFAUST tries to compensate for the
shifts in your matrix by increasing the figures in all relevant other cells
the result is not a correctly working automaton.
For instance, the cell marked by Òtwo ECUÓ/Ò1 ECUÓ contains Ò5Ó. This
is so because at state Òtwo ECUÓ inserting Ò1 ECUÓ was ÒenoughÓ in
the previous version of the automaton. For the new version the correct
cell entry would, of course, be Ò4Ó.
MacFAUST is blind to the subtleties and you have to fix these parts of
your state transition matrix manually (if your matrix is large, see the
ÒEditing very large state transition matricesÓ chapter in this part [IV.6] of
the manual). Therefore you should now:

 Choose State transition matrix from the Windows menu to fill in the correct
figures.

If you wish to try instantaneously how your automaton works after these changes see IV.5
ÒTrying the new automaton while editingÓ.

You can also add an entire output variable. In this case, your automaton would have two
different output fieldsÑeach field belonging to a different output variable. To add an entire
output variable you must:

 Choose Output signals from the Edit menu.

 In the ÒEdit output variablesÓ dialog click AddÊentireÊvariable .

Adding and deleting output signals 26

The standard user interface appears and the field of the new output
variable has been inserted. This new variable has two levels. By
default, all state transitions associated with the new variable will be set
to Ò1Ó. Also, note that although MacFAUST will try to take into account
the changes done to your matrix it will most certainly be necessary to
fix some problems in the matrix (see the example given in the previous
section on ÒAdding an output variable levelÓ).
Note that adding a new ÒtwoÐlevelÓ output variable will double the
number of output states of your automaton since multiple output
variables are ÒnestedÓ and the combinations of their levels form the set
of possible output signals.

You may also want to remove an output variable from your automaton. This is done in a
stepwise manner. You actually delete only levels of output variables. However, if an output
variable has only two levels, removing the second of these two levels will imply that the entire
variable will be removed (this should seem plausible since an automaton with only one output
signal would not make much sense: it would always display the same thing; the reasoning here
is parallel to the situation with input variables).

 Choose Output signals from the Edit menu.

 In the ÒEdit input variablesÓ dialog click RemoveÊvariableÊlevel .
 If you have more that one output variable , a dialog will ask you which variable you wish to edit.
Click on the hand that points to the variable you wish to edit.

A window appears that is similar to the one you see when you edit the
labels of your output signals but this time the background is shaded
gray. This is to indicate that you are about to make major changes to
your automaton.

 Click on the bar icon for the output signal you wish to remove (it will blink). Click OK .

The standard user interface appears and the selected output variable
level has been removed. If the output variable had only two levels, the
entire variable has been removed and the corresponding output field
will be missing.
As with adding output variables, removing them will cause cell entries
(numbers indicating the ÒnextÓ states) in the state transition matrix to
point to the wrong states of the system. MacFAUST tries to compute for
each cell entry the correct new reference by taking into account the
states that have been removed. However, some entries inevitably will
have a reference to states that will have been removed. In this case,
the cell entry is set to Ò1Ó (which often times will be the initial state of
systems), and you will have to fix your matrix manually.

Latent states: Adding an invisible output variable 27

IV.3 Latent states: Adding an invisible output variable
Sometimes you may want to have state transitions that are invisible to the user. In other words,
the state does change, but the signal does not. Of course, you can do this by assigning identical
labels to output signals for different states. This method will, however, work only for small
scale manipulations. In addition, editing such a matrix can become quite confusing. For more
ÒdrasticÓ manipulations and more convenience for the experimenter we added the option to
make an entire variable invisible. For instance, assume you have the following state transition
matrix:

Output Input
Variable 1 Variable 2 Signal States 1 2

A 1 A1 1 1 4
A 2 A2 2 2 5
A 3 A3 3 3 6
B 1 B1 4 3 6
B 2 B2 5 2 5
B 3 B3 6 1 4

We assume that we have two output variables with three levels each and one input variable with
two levels. The output signal is composed of the labels of the two output variables, and each
state 1..6 is identified by a unique output signal. However, if we make the Variable 1 invisible
(i.e., the labels of this variable no longer appear on the screen), then things get very
complicated. We recommend that you try the example automaton presented here (this is worth
more than reading two pages of manual prose). Make sure that Variable 1 appears in the top
field of the output variables. After you have created the automaton as usual do the following:

 Choose Options from the Windows menu.

 In the next dialog select Include latent state to make Variable 1 the latent
variable (MacFAUST always selects the variable appearing in the top output field).
Click Save .

The standard user interface appears and the top most output variable
now appears white instead of gray. This is to indicate that it will not be
visible in an actual experiment. However, it is still visible for you both
during editing and when you try the automaton (see the ÒTrying the
new automaton while editingÓ chapter [IV.5] in this part of the manual).

IV.4 Process control: Adding time effects
In Parts II and III we have dealt with automata that produced state transitions only after an input
button had been hit. In other words, these automata were completely user dependent. In reality,
however, there are ample examples for machines that are not so patient. Some ticket vendors,
for instance, eject your money if you did not inset it within a specific time interval. If such
processes operate on a large scale and have to be taken into account by a person interacting with
the system (e.g., in industrial plants) we usually call that process control.

Process control: Adding time effects 28

Technically, adding time effects can be thought of as adding an additional input (i.e., an
additional column) to the state transition matrix that determines which state will be the next
system state if the conditions of the time effect are true. MacFAUST actually adds three
columns to the state transition matrix, the first of which contains as entries the next system state
given a particular previous state and the time effect conditions being true. The next two columns
contain parameters that serve the program to identify which states include time effects and what
exactly the condition for a particular time effect is. (You should remember this structure when
you edit a state transition matrix as described in IV.6 ÒEditing very large state transition
matricesÓ.)
MacFAUST offers a selection of three conditions to define time effects.

➀ The most simple case is that after a fixed time interval the system shifts to a
defined state. The time interval starts after the system has shifted from its initial
state to a different state. This would, for instance, be the case for one of these
modern ticket vendors that automatically initiate a reset to the initial state if the
user has not inserted the money within a certain time interval.

➁ It is possible to construct a system that will shift to a defined state always after a
fixed time interval. In contrast to the first case this system never ÒrestsÓ. Even
once it has reached the defined state it will produce shifts to that state whenever
the next time interval is over, thus Òusing upÓ the interventions a person could
use to move the system to the goal state.

➂ The third and most complicated option is to define for each state separately
whether there should be a next state for the system to shift to after a specific time
interval, and what the length of the interval should be. It will now be described
how the options can be handled in MacFAUST.

 Choose Time effects from the Edit menu.

A dialog appears that gives you control over the initial settings of your
time effect manipulations. The changes in this dialog will affect all
states of the automaton.
Notice that the default option for a new automaton is that the ÒState
transitions depend on user«s inputsÓ option is selected. This means
that the automaton does not shift to any states simply as a function of a
time interval. To include time effects you must:

 Select

 State transitions depend on users input and time interval. To
implement one of the options ➀ to ➂ follow the appropriate sequence of steps:

➀ Select Start interval independent of user«s input. Then
select Start count-down at the initial state. Next determine
how long the interval shall be and what state to shift to by entering in the editable
fields the appropriate number of seconds for the time interval and the ordinal
number of the state the system will move to when the interval is over. For
instance, if you want the ticket vendor from the example in Part II of this manual

Process control: Adding time effects 29

to shift to State 1 exactly 5 seconds after users have made their first input enter

Ê Ê 5 Ê Ê sec

Ê Ê 1 Ê Ê No. of the new state
Click LabelÊofÊnewÊstate to see the output signal of the new state (in
our example this will be ÒemptyÓ).
Click OK .

➁ Select Start interval independent of user«s input. Then
select Start count-down successive. Next determine how long
the interval shall be and what state to shift to by entering in the editable fields the
appropriate number of seconds for the time interval and the ordinal number of
the state the system will move to when the interval is over. For instance, if you
want the ticket vendor from the example in Part II of this manual to shift to State
1 every 3 seconds (unless users have reached the goal state) even if the system
already is in State 1, enter

Ê Ê 3 Ê Ê sec

Ê Ê 1 Ê Ê No. of the new state
Click LabelÊofÊnewÊstate to see the output signal of the new state (in
our example this will be ÒemptyÓ).
Click OK .

➂ Select Start interval dependent on user«s input. Then
click Continue .

In the next dialog you can choose a number of parameters that will affect all cells
involved in time effects. This feature is particularly useful if you have in mind
that time effects should be homogeneous for most states but that there should be
some exceptions.
However, if you have already edited time effects in your automaton be aware
that saving settings from this dialog will override all you previous time effect
parameters. If this would imply that you lost a lot of work you must click Skip
to get directly to the next dialog.

Depending on the characteristics of your automaton first select the option for the
next state after the time interval. This may be

 defined state (enter the state number in the editable field that appears
when you select this option).

 initial state (regardless of which initial state you will select later).

Process control: Adding time effects 30

 transition to the same state (in other words, the system will
remain in that state but Òuse upÓ an intervention trial).

If most of your states will not be involved in state transitions that depend on time
intervals select Initially no dependency on time. This is
selected by default. If most of your states are involved in time effects, deselect it.

Finally, enter in the editable Interval field the number of seconds for the

standard time interval. The default value is Ê Ê1 0 Ê Ê sec.

Click Save to save these parameters as the standard values for your time
effects. However, you may also
click Skip to avoid saving them. You will always want to skip if you want to
avoid that your previous editing of time effects are cancelled and overridden.

In any case, a new dialog will then display for every state the current (standard
or previous) settings of the time effects parameters. These are

¥ whether or not a state is involved in time effects;
¥ the number of the next state given the time interval is over;
¥ the length of the interval after which the shift will occur.

To edit these parameters simply click on the bar icon of the particular state you
wish to edit. In the dialog that appears you may change the settings for that state.

After you have completed the setting of time effect parameters click OK .

Finally, the standard user interface appears again. Remember that
initially the default option for the automaton was that the ÒState
transitions depend on user«s inputsÓ option was selected. This means
that the automaton would not shift to any states simply as a function of
a time interval. If you later decide that your automaton should not
include time effects, simply select this option again. Note, however,
that the parameters you have set for your time effects will not be lost.
Whenever you select the time effects option (ÒState transitions depend
on users inputs and time intervalÓ) again, your old parameter settings
are in effect again. Likewise you should remember this when you edit
the state transition matrix as described in the ÒEditing very large state
transition matricesÓ chapter [IV.6]: the last three columns in this matrix
will still contain the time parameter settings.

IV.5 Trying the new automaton while editing

Trying the new automaton while editing 31

Very frequently you want to control whether your changes to the automaton had the intended
effects. To make this as convenient as possible we added an option to try out an automaton
while editing.

 Choose Try OUTomaton from the Specials menu.

The standard file dialog appears and asks you to save your changes
to a parameter file. The standard file name offered is the original name
of your automaton«s parameter file. If you are not quite sure that your
last changes were good and you do not want to loose your previous
work simply save the data to a new automaton.

 Type in the new name if necessary and click Save .

Before it will save the data MacFAUST must compute a few additional
figures necessary for actually ÒrunningÓ the automaton (such as the
distances of each state from the goal state). Some of these
computations may fail because there are problems with the state
transition matrix.
For instance, one frequent cause of a failure is that the goal state
cannot be reached from any of the other states. It is necessary that
there is at least one sequence of states and interventions from the
initial state to the goal state. Another frequent problem is that there is a
Òdead end stateÓ (i.e., an absorbing state from which only transitions to
the state itself but not to another state are possible). The same
situation may, of course, also be true if two or more states form a Òdead
end loopÓ from which there is no escape.

MacFAUST gives you feedback about potential causes of the problem
and also about the locations of problematic cell entries. A reference is
made to the states that are involved in the problem. It is probably a
good idea to copy the information from the messages you receive,
save the data to a different file, and then try to remove the bugs in your
state transition matrix. In locating the problem and fixing it you must
keep in mind that ÒstatesÓ of the automaton correspond to the lines in
your state transition matrix.

In case of no problem in computing the figures for your automaton you
can now try it out and see if it works as you want it to. The ÒTry
OUTomatonÓÑmenu will be marked by a check symbol (ÒÖÓ).

We recommend that you make use of the external support systems
MacFAUST has been equipped with originally for experimental
purposes. If you try out your automaton this always occurs under the
current settings of Condition 1 (see the ÒSetting experimental
conditions in MacFAUSTÓ in Part III.2 of this manual).

Trying the new automaton while editing 32

Finally, if you want to return to editing the automaton

 choose ÃTry OUTomaton from the Specials menu to unselect the option.

IV.6 Editing very large state transition matrices
When you have very large state transitions, editing them in the MacFAUST environment may
be somewhat tedious and uneconomical. This is particularly so if your matrix contains areas
with redundant entries (e.g., transitions to the same state in an entire row) or if sub-parts of the
automaton can be derived from each other by a simple algorithm. In this case it is more efficient
to do most of the matrix editing in a commercial word processing orÑeven betterÑspreadsheet
application. For this purpose it is possible to ÒexportÓ state transition matrices as tab-delimited
text files. In principle, these text files look like the state transition matrices used as examples
throughout this manual. All elements (the state and input labels as well as the cell entries) are
separated by tabs. You can now make changes to the cell entries in your matrix (not to the
labels, however, since with the current version of MacFAUST they cannot be reÐimported).
After you have made your changes you can ÒimportÓ the data again and save them to your
parameter file. This section explains the necessary steps. Also, there are a few other things that
can be ÒexportedÓ:

 Assuming you have already opened an automaton you can choose Export matrix
from the Specials menu.

 In the dialog that appears you may select one of the following options:
 Only the labels of the input and output variables. This may be

useful if you need them for purposes of documentation. Labels cannot be re-
imported.

Knowledge test items. This may be useful if you need them for purposes
of documentation.

Distance from goal state. This information can help you to design an
automaton with specific properties that depend on that data, and to design control
tasks. Goal distance information is always computed when you save your
automaton so there is no point in re-importing it).

 Complete state transition matrix. This is the option you will probably
make use of most frequently. Your state transition matrix will be exported as
tabÐdelimited text such that standard word processors and spreadsheet
applications can read it.

Click OK .

The standard file dialog appears and asks you to save your data in a
text file. The standard file name offered is the original name of your
automaton«s file plus a specific suffix. This suffix is

-LABELS for a file containing input and output variable labels;
-TESTS for a file containing your knowledge test items;

Editing very large state transition matrices 33

-DISTANCE for a file containing goal distance information;
-STM for a file containing a complete state transition matrix.

When you edit a state transition matrix make sure that you change the cell entries only, and not
the labels of the variables. These cannot be re-imported with the current version of MacFAUST
but changes may affect the importing process in such a way that you will no longer be able to
import your matrix! Also, you must not change the size of your state transition matrix (i.e, do
not add columns and/or rows). If the data in the text file do not fit your automaton MacFAUST
will reject the file!
In order to import a matrix first make sure that you have the proper automaton loaded.

 Choose Import matrix from the Specials menu

The standard file dialog appears and asks you for a text file.

 Select the file you want to import (if you followed the conventions we suggested this
will be a file named according to your parameter file plus the suffix ÒSTMÓ) and click
OK .

MacFAUST will compare the data of the text file to the parameters of
the currently loaded automaton. If the data in the text file do not fit your
automaton MacFAUST will reject the file!
Otherwise it will read in the state transition matrix (not the labels,
however) and update the cell entries accordingly. You should then
save your file to check if your matrix does not contain any formal
errors.
If MacFAUST finds an outÐofÐrange error (i.e., a cell entry larger than
the number of states of your automaton) it warns you and displays the
critical cell entry in a dialog together with information about the
location of the entry (row and column) so you can change it.

IV.7 Computing a complexity index for your automaton
MacFAUST offers you to determine a complexity index to assess the decisional structure which
the state transition matrix presents to the ÒnaiveÓ subject. By the term ÒnaiveÓ we have two
things in mind. First, if you model a device that is more or less known to your subjects they
can usually very quickly reduce the complexity of the device by applying prior knowledge to
check which concepts they suspect are really present and in what form. Second, even if you use
devices that do not occur in real world, subjects will develop concepts to group similar state
transitions (e.g., the effects of an Èon/offÇ switch). Thus, the complexity index is of use only
to the degree to which the automaton is Òcompletely newÓ to your subjects. Nevertheless we
think the complexity index is a useful indicator particularly for comparing different automata on
formal grounds.

 Choose Complexity from the Specials menu.

Computing a complexity index for your automaton 34

MacFAUST presents a dialog containing the complexity information.
This information is computed according to a measure that has
originally been suggested by McCabe (1976) to assess the decisional
complexity of computer programs. It takes into account the number of
states a device can be in, and the number of interventions with
different consequences possible for a given system state. This
complexity measure may be used to characterize the overall
complexity of automata. Considering a finite state automaton A with n
states, e different transitions given each state and summed over all
states and p connected components complexity C is defined as

C(A) = e - n + 2 * p.

Since p is different from 1 only for hierarchically nested automata (a
case which is irrelevant for our present purpose) we can say that for
the ticket vendor example in Part II n = 6 and e = 19, resulting in C = 19
- 6 + 2 * 1 = 13. This figure may then be used to make ordinal
comparisons between different automata.

IV.8 Structure of a subject´s data file
In an experiment all intervention data and all data from the knowledge tests are written to a text
file. The general structure of that data file is outlined in the figure below. Note, however, that
the format of the columns varies as a function of the automaton«s properties. In particular, the
number of input variables (refered to as ÒComponents of input signalÓ) determines how
many columns are needed to code each component, beginning at column 3.
Data having to do with the external support systems are coded in the columns left of the ÒOutput
signalÓ column. By default, some columns are provided for each data point relevant to an
external support system regardless of whether that support has been present in the experiment
or not. In the latter case, the column is filled with Ò0Ós. This way of handling the data logging
is, of course, time and (storage) space consuming. However, it has the advantage of leaving the
data structure relatively simple (i.e., it does not vary between different experimental
conditions). Time is coded in whole seconds for data from the intervention trials (note,
however, that the reaction times for the verification task are measured and coded in
milliseconds).

Structure of a subject´s data file 35

The ÒtableÓ of intervention data has as many rows as there are intervention trials (only 9 in the
present example). One special feature is the Ò0Ó in the ÒInput signalÓ column in row 2.
Obviously there cannot be a ÒnormalÓ No. 0 input. We have chosen to use this figure to indicate
state transitions that have been initiated as a function of a time interval and not as a consequence
of a user input (➟ IV.4 ÒProcess control: Adding time effectsÓ).
The ÒtableÓ of knowledge test data has as many rows as there are knowledge test items
(summed over all types of tests and all test phases). Time is coded in whole seconds for data
from the recognition tasks. However, the reaction times for the verification task are measured
and coded in milliseconds. MacFAUST uses ÒDrexel«s millitimerÓ (Westall, Perkey, & Chute,
1989) for measuring keystrokeÐbased reaction times. This, finally, is what the data from a
fictitious diagnostic phase with different types of knowledge tests would look like:

1 1 1... 1 1 0 0 3 0 1 0 0
2 1 0... 0 2 0 0 5 0 1 0 0

" " "... " " " " " " " " "

9 1 1... 1 1 0 0 2 0 1 0 0
" " "... " " " " " " " " "

3 2 2... 3 1 0 0 2 0 1 0 0

Tria
l

Prev
iou

s o
utp

ut
sig

na
l

Outp
ut

sig
na

l

Inp
ut

sig
na

l

Com
po

ne
nts

 of
 in

pu
t s

ign
al

 (

mult
ipl

e i
np

ut
va

ria
ble

s)

Dist
an

ce
 fro

m go
al

sta
te

Tim
e u

se
d t

o m
ak

e a
n i

nte
rve

nti
on

N of
 di

ffe
ren

t n
ex

t s
tat

es

N of
 ca

lls
to

“D
ist

an
ce

 fro
m G

oa
lst

ate
”

Stat
e t

ran
sit

ion
 us

ing
 th

e “
Dyn

am
ic

Mem
ory

”

Tim
e s

pe
nt

us
ing

 th
e “

Exte
rna

l M
em

ory
”

Tim
e s

pe
nt

us
ing

 “D
ist

an
ce

 fro
m G

oa
lst

ate
”

1 1 1 2 0 0 0 0 0 0 2 2 1 1... 1... 1... 1...

1 4 2 3 0 0 0 0 0 0 2 3 0 2... 2... 4... 2...

" " " " " " " " " " " " " "... "... "... "...

1 8 5 9 0 0 0 0 0 0 2 2 1 1... 1... 1... 3...

4 1 1 2 1 1 0 1 0 0 2 2 1 1... 1... 1... 1...

" " " " " " " " " " " " " "... "... "... "...

Kind
 of

 kn
ow

led
ge

 te
st

Prev
iou

s o
utp

ut
sig

na
l

Outp
ut

sig
na

l

Inp
ut

sig
na

l

No.
of

pre
se

nta
tio

ns

N of
 st

ate
s w

hic
h c

an
 be

 re
ac

he
d

Com
po

ne
nts

 of
 pr

ev
iou

s o
utp

ut
sig

na
l

Com
po

ne
nts

 of
 in

pu
t s

ign
al

Com
po

ne
nts

 of
 se

lec
ted

 ou
tpu

t s
ign

al

Tim
e u

se
d f

or
an

sw
eri

ng

Use
r´s

 R
es

po
ns

e:
Outp

ut
sig

na
l

Eva
lua

tio
n o

f u
se

r´s
 re

sp
on

se

Ite
m st

atu
s

Con
fid

en
ce

 ra
tin

gs

N of
 st

ate
s t

his
 st

ate
 ca

n b
e r

ea
ch

ed
 fro

m

Use
r´s

 re
sp

on
se

Com
po

ne
nts

 of
 ou

tpu
t s

ign
al

Structure of a subject´s data file 36

¥ ÒKinds of knowledge testÓ: Ò1Ó to Ò3Ó = Recognition 1 task to Recognition 3 task,
respectively; Ò4Ó = verification task.

¥ For Recognition 1 to Recognition 3 tasks ÒUser«s responseÓ contains the number of
errors made in selecting the proper components for the missing element of the state
transition.

¥ For the verification task ÒUser«s responseÓ contains the answer: Ò1Ó=ÒYesÓ, Ò2Ó=ÒNoÓ.

¥ For Recognition 1 to Recognition 3 tasks ÒEvaluation of user«s responseÓ contains the
number of selected distractors.

¥ For the verification task ÒEvaluation of user«s responseÓ contains the evaluation of the
answer: Ò1Ó = ÒHitÓ, Ò2Ó = ÒFalse AlarmÓ, Ò3Ó = ÒCorrect RejectionÓ, Ò4Ó = ÒMissÓ.

¥ ÒItem statusÓ is always Ò0Ó in the recognition tasks, and in the verification task Ò1Ó
indicates a false item.

¥ ÒNo. of presentationsÓ is relevant for the verification tasks only. It contains the number of
times an item was repeated during the test because of too fast (< 100 ms) or too slow (>
15000) reaction times or because a wrong key had been hit.

¥ ÒTime used for answeringÓ is measured in seconds for Recognition 1 to Recognition 3
tasks, and in milliseconds for the verification task.

¥ All other columns contain item information (i.e., they characterize the probed state transition)
similar to the information recorded during the intervention trials.

The File menu 37

Part V: Reference to menu commands and
options

V.1 The File menu

New (1ÐN)
Creates a new automaton (➟ II.2 ÒPlanning an example automatonÓ, and II.3 ÒCreating a
new automatonÓ).

Open (1ÐO)
Opens an existing automaton for editing. The data must be in a MacFAUST parameter file. (To
read state transition matrices from text files ➟ IV.6 ÒEditing very large state transition
matricesÓ).

Save (1ÐS)
Saves the parameters of an automaton to a parameter file (➟ II.3 ÒCreating a new automatonÓ,
and IV.5 ÒTrying the new automaton while editingÓ).

Experiment (1ÐE)
Starts and controls an experiment (➟ III.1 ÒPlanning an example experimentÓ, III.3
ÒRunning the example experimentÓ, and III.4 ÒAdding knowledge tests to your parameter
fileÓ).

Experimental conditions
Gives control over the number of different experimental conditions, and the features of each
condition (➟ III.2 ÒSetting experimental conditions in MacFAUSTÓ). This information in not
stored in a parameter file but rather in MacFAUST itself (in its Òresource forkÓ). This way it is
possible to run different experimental conditions with the same automaton (=parameter file).

Quit (1ÐQ)
Terminates the program both during editing and during an experiment. If, during an
experimental session, the menu has been switched off and you decide to terminate the
experiment, type 1-M to turn back on the menu and then quit as usual. All data will be saved
in the text file you specified at the beginning of the experiment.

V.2 The Edit menu

The Edit menu 38

Input signals (1ÐI)
Gives the option to add, delete, or change the position of input buttons. Also, entire input
variables may be added or removed (➟ IV.1 ÒAdding and deleting input signals and changing
their positionsÓ). In an automaton with more than one input variable the user must select one
button from each input variable and then click ÒOKÓ before a state transition occurs. In general,
automata with more than one input button should also have an ÒOKÓ button whereas others may
have but do not need one (➟ V.1 ÒThe Windows menuÓ: ÒOptionsÓ).

Output signals (1ÐU)
Gives the option to add or delete output signals. Also, entire output variables may be added or
removed (➟ IV.2 ÒAdding and deleting output signalsÓ). In an automaton with more than one
output variable the output signal is composed of two or more elements, some of which may or
may not change after a transition.

Time effects (1ÐT)
Gives the option to add state transitions that do not or do not exclusively occur as a function of
a user«s intervention, but also as a consequence of a defined time interval. This adds the
dynamics of time to the task of exploring a device, and actually makes it a process control task
(➟ IV.4 ÒProcess control: Adding time effectsÓ).

No. of intervention trials (1ÐL)
Gives the option to determine for an experiment the number of blocks of intervention trials
(ranging from 1 to 5) and the number of trials for each block (ranging from 2 to 200) that are
available to a subject for exploring the automaton (➟ III.4 ÒAdding knowledge tests to your
parameter fileÓ).

Knowledge tests (1ÐD)
Gives the option to determine for an experiment whether a block of intervention trials will be
followed by knowledge tests, the types of knowledge tests (three different types of a
recognition task and a verification task), the order of different types of knowledge tests, the
number of items of each type knowledge test (ranging from 1 to 20) and the state transitions
used as knowledge items. (➟ III.4 ÒAdding knowledge tests to your parameter fileÓ).

Display options
Gives the option to display either verbal labels (➟ V.1 ÒThe Windows menuÓ: ÒInput signalsÓ
and ÒOutput signalsÓ) or use a graphical display. The graphical display may be particularly
interesting if the automaton involves numerically ordered output signals.

Tutoring (1ÐG)
Allows to define a set of interventions and state transitions that are displayed to subjects without
giving them the possibility to make an active intervention. In contrast to Òlearning-by-doingÓ
these subjects must learn by observation.
Use the horizontal scroll bars to select the ÒcurrentÓ and ÒnextÓ states for the transitions to be
displayed (this works similar to the way you edit the knowledge test items). Use the vertical

The Edit menu 39

scroll bar to add transitions (by clicking in the arrow pointing downwards) and to scroll
through the list of defined state transitions.

V.3 The Windows menu

Input labels (1Ð1)
Returns to the standard user interface if you are in a different window. Click into the input
buttons to edit their labels (➟ II.3 ÒCreating a new automatonÓ).

Output labels (1Ð2)
Displays the window containing the icons for the output labels (clicking into the output field has
the same effect). Click into the output label icons to edit their labels (➟ II.3 ÒCreating a new
automatonÓ). Also, each output variable (i.e., each field in the output display) has a verbal label
that you can edit. Click in the gray part of the output field to bring up the dialog for editing.

State transition matrix (1Ð3)
Displays the window containing the bar icons for the input and output signals. Click into an
output signal bar icon and an input signal bar icon to invoke a dialog that asks you to enter the
Ònext stateÓ for that state transition (➟ II.3 ÒCreating a new automatonÓ).

Default values (1Ð4)
Gives you control over the initial state and the goal state of the automaton. By default, an
automaton has only one goal state. For special control tasks, however, you may want your
subjects to first start from an initial state SI1 and reach a certain goal state SG1, then move from
a specific SI2 to SG2, and so on. To create a matrix which has this control task implemented,
choose the number of different SIÐSG pairs you need (between 1 and 5), and specify by
entering the numbers of the appropriate states the sequences of state transitions that will be
required.

Options (1Ð5)
Gives you the option to control for an experiment whether or not the following things occur:

¥ The automaton does or does not have an ÒOKÓÐbutton to confirm an input (in devices
without an ÒOKÓÐbutton each click into an input signal has an immediate effect). Note
that during editing, the ÒOKÓÐbutton is present because it is needed to get your
confirmation on certain changes to the system parameters. However, if you try your
automaton during editing (➟ IV.5 ÒTrying the new automaton while editingÓ), the
ÒOKÓÐbutton will disappear temporarily if no ÒOKÓÐbutton has been selected for the
experiment.
The default is no ÒOKÓÐbutton if you selected ÒButtons of all lines belong to the same
input variableÓ, whereas automata with multiple input variables must have an ÒOKÓÐ
button (➟ II.3 ÒCreating a new automatonÓ).

The Windows menu 40

¥ The knowledge test items (➟ III.4 ÒAdding knowledge tests to your parameter fileÓ)
include for the ÒnextÓ states of a probed state transition such state labels that have not
actually been present in the automaton but were added during editing (➟ II.3 ÒCreating
a new automatonÓ). If this shall be the case select ÒInclude distractorsÓ in this dialog.

¥ The top most output variable is not displayed to subjects. This option is used to create
Òlatent statesÓ (➟ IV.3 ÒLatent states: Adding an invisible output variableÓ).

V.4 The Specials menu

Complexity (1ÐK)
Computes a complexity index for your automaton (➟ IV.7 ÒComputing a complexity index for
your automatonÓ).

About parameter file (1ÐA)
Gives you the possibility to enter information that will be saved with the automaton such as the
name of the person who designed the automaton, the date, and some additional comments that
may be useful if you are working with different versions of an automaton. You can always look
up this information during editing. Also, every time you save your automaton you will be asked
if you would like to make changes to this information (➟ II.3 ÒCreating a new automatonÓ).
Click ÒOKÓ to save changes, but click ÒSkipÓ to go on and ignore changes.

Export matrix (1ÐP)
Gives you the possibility to export your state transition matrix as tabÐdelimited text so you can
edit it in a standard word processing of spreadsheet application (➟ IV.6 ÒEditing very large
state transition matricesÓ). In addition, you may export the labels of your input and output
signals, knowledge test items, and the goal distance information of your system states.

Import matrix (1ÐH)
Gives you the possibility to import a state transition matrix that you previously exported as tabÐ
delimited text (➟ IV.6 ÒEditing very large state transition matricesÓ).

Try OUTomaton (1ÐR)
Gives you the possibility to try out how your automaton works while you are editing it (i.e.,
without having to start an experiment; ➟ IV.5 ÒTrying the new automaton while editingÓ).

References 41

References
Albert, J., & Ottmann, T. (1983). Automaten, Sprachen und Maschinen f�r Anwender.

Mannheim: B.I.-Verlag.

Buchner, A., & Funke, J. (1990). Discrete systems as tools for studying knowledge
acquisition and knowledge use in dynamic task environments. Berichte aus dem Psycho-
logischen Institut der Universit�t Bonn, 16 (4).

Buchner, A., & Funke, J. (1991). Transfer of associations in finite state automata. Berichte aus
dem Psychologischen Institut der Universit�t Bonn, 17 (2).

Buchner, A. & Funke, J. (1993). Finite state automata: Dynamic task environments in problem
solving research. Quarterly Journal of Experimental Psychology, 46A, 83-118.

Buchner, A., Funke, J., Schmitt, L., & Nikelowski, B. (1990). External support systems for a
dynamic task environment: Results from two experiments on memory and evaluation aids.
Berichte aus dem Psychologischen Institut der Universit�t Bonn, 16 (5).

Funke, J. (1991). Solving complex problems: Human identification and control of complex
systems. In R.J. Sternberg & P.A. Frensch (Eds.), Complex problem solving: Principles
and mechanisms (pp. 185-222). Hillsdale, N.J.: Lawrence Erlbaum.

Funke, J., & Buchner, A. (1992). Finite Automaten als Instrumente f�r die Analyse von
wissensgeleiteten Probleml�seprozessen: Vorstellung eines neuen Untersuchungsparadig-
mas. Sprache & Kognition, 11, 27-37.

Hopcroft, J.E., & Ullmann, S.D. (1979). Introduction to automata theory, languages, and
computation. Reading, MA: Addison-Wesley.

McCabe, T.J. (1976). A complexity measure. IEEE Transactions on Software Engineering,
SE-2, 308-320.

Salomaa, A. (Ed.). (1985). Computation and automata. Cambridge, MA: Cambridge
University Press.

Westall, R.F., Perkey, N., & Chute, D.L. (1989). Millisecond timing on the Apple Macintosh.
Updating Drexel«s millitimer. Behavior Research Methods, Instruments, & Computers, 21,
540-547.

Author´s address and order form 42

Author´s address
Dr. Axel Buchner is now at the Department of Psychology, Trier University, D-54286 Trier. E-
Mail: buchner@cogpsy.uni-trier.de

Dr. Joachim Funke is now at the Department of Psychology, Heidelberg University, Hauptstr.
47-51, D-69117 Heidelberg. E-Mail: joachim.funke@urz.uni-heidelberg.de

Berichte aus dem Psychologischen Institut der Universität Bonn 43

Berichte aus dem Psychologischen Institut der Universit�t Bonn

Die "Berichte aus dem Psychologischen Institut der Universit�t Bonn" (ISSN 0931-024X) gibt
es seit 1975. Die ersten vier Jahrg�nge bestehen aus 21 fortlaufend numerierten Heften. Ab
Jahrgang 5 (1979) beginnt die Heftz�hlung in jedem Jahr bei Heft 1. Eine �bersicht �ber die
zuletzt publizierten Hefte gibt folgende Liste.

 Band 14 (1988)
Heft 1: M�ller, H., Funke, J. & Rasche, B. (1988). Wechselseitige Abh�ngigkeiten: Zum

Einflu§ von Nebenwirkungen und Eigendynamik auf die Bearbeitung dynamischer
Systeme.

Heft 2: Fahnenbruck, G., Funke, J. & Rasche, B. (1988). Vorwissensvertr�glichkeit,
Steuerbarkeit, Steueranforderung und Darbietungsform als Determinanten der
Bearbeitung dynamischer Systeme.

Heft 3: Erdfelder, E. (1988). The empirical evaluation of deterministic developmental
theories.

Heft 4: Erdfelder, E. & Funke, J. (1988). Entwicklung eines Polynomial-Tests f�r die
Ausrei§er-Alternative und Anwendung auf ein kognitionspsychologisches Beispiel.

Heft 5: Funke, J. (1988). Bedingungen und Auswirkungen der Informationssuche und -
aufnahme beim Bearbeiten des komplexen Simulationssystems "TAILORSHOP".

 Band 15 (1989)
Heft 1: Funke, J. & Kleinemas, U. (1989). Theoretische und empirische Beitr�ge zur

Diagnostik strukturellen Wissens im Kontext dynamischer Systeme.
Heft 2: Erdfelder, E. (1989). Maximum likelihood analysis of binomial mixtures. A manual

for users of BINOMIX.

 Band 16 (1990)
Heft 1: Kleinemas, U., Rasche, B. & Funke, J. (1990). Beitr�ge zur Entwicklung und

Validierung wissensdiagnostischer Instrumente: Ein Modell, Befunde und For-
schungsperspektiven.

Heft 2: Bayen, U. (1990). Zur Lokalisation von Altersdifferenzen im episodischen Ge-
d�chtnis Erwachsener: eine Querschnittsuntersuchung auf der Basis eines ma-
thematischen Modells.

Heft 3: Buchner, A., Funke, J. & Dehn, D. (1990). Mental representations of complex
systems. An experiment on knowledge acquisition and knowledge use.

Heft 4: Buchner, A. & Funke, J. (1990). Discrete systems as tools for studying knowledge
acquisition and knowledge use in dynamic task environments.

Heft 5: Buchner, A. Funke, J. Schmitt, L. & Nikelowski, B. (1990). External support
systems for a dynamic task environment: Results from two experiments on memory
and evaluation aids.

 Band 17 (1991)
Heft 1: Funke, J. (1990). Der R�ckfall des Alkoholabh�ngigen: Versagen der Therapie oder

Bestandteil erfolgreicher Behandlung?
Heft 2: Buchner, A., & Funke, J. (1991). Transfer of associations in finite state automata.

The actual list of this reports can be found on the Internet:
http://www.psychologie.uni-bonn.de/allgm/publikat/bericht.htm

